

GCE Edexcel GCE Chemistry Nuffield(8086/9086)

January 2005

Mark Scheme

advancing learning, changing lives

Edexcel GCE Chemistry Nuffield (8086/9086)

Unit 6251/01

SECTION A

1	Magnesium or beryllium			
2	Only penalise wrong or missing units once in parts (a) & (b).			
	(a)	24 dm ³ OR 24 000 cm ³	(1 mark)	
	(b)	48 dm ³ OR 48 000 cm ³	(1 mark)	
3	(a)	Reduction – gained electron(s)/ decrease in oxidation number	(1 mark)	
	(b)	$\begin{bmatrix} & & & \\ & + & \\ & + & \\ & + & \\ & + & \\ & + & \\ & + & \\ \end{bmatrix}^{2-}$	(1 mark)	
	(c)	Na ⁺ or Mg ²⁺ or Al ³⁺ Ne / Neon F ⁻ or N ³⁻	(3 marks)	
4	Too many electrons No electrons between the positive ions Positive ions touching / should have gaps			
	Chec marks	(2 marks)		

TOTAL SECTION A: 10 MARKS

SECTION B

5	(a)	Isome	er(s)	(1 mark)
	(b)	B and	I C	(1 mark)
	(c)	А		(1 mark)
	(d)	2-met	hylpropan-2-ol	(1 mark)
	(e)	D and	IE	(2 marks)
	(f)	(i)	Removal of water	(1 mark)
		(ii)	Alkene / C=C /carbon carbon double bond	(1 mark)
		(iii)	$ \begin{array}{c} H \\ H \\ H \\ C \\ H \\ C \\ H \\ H \end{array} $ (1)	
			2-methylprop-1-ene (1)	

(2 marks)

(Total 10 Marks)

6	(a)	2p	⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² (1) 4p ⁶ 5s ² (1)	(2 marks)
	(b)	(i)	$Sr(g) \rightarrow Sr^{+}(g) + e^{-}$ Formulae (1) State symbols (1)	(2 marks)
		(ii)	ALL increasing (1) Jump between second and third larger than between any other pair (1) (2 marks)
	(c)	Prov	vide red colour	(1 mark)
	(d)	(i)	Sr ²⁺	(1 mark)
		(ii)	Sr(OH) ₂	(1 mark)
	(e)	(i)	$Sr(s) + 2H_2O(I) \rightarrow Sr(OH)_2(aq \text{ or } s) + H_2(g)$	
			Formula, H ₂ and balancing (1) state symbols (1)	(2 marks)
		(ii)	$Sr(OH)_2(s) + 2HCI(aq) \rightarrow SrCI_2(aq) + 2H_2O(I)$ Formulae and balancing (1) State symbols (1)	(2 marks)
	(f)	Any	number from 8 to 12 inclusive	(1 mark)
				(Total 14 Marks)

(a)	(ion	ic) precipitation	(1 mark)
(b)	(i)	(2)NH ₄ ⁺ and $Cr_2O_7^{2-}$	(2 marks)
	(ii)	$Cr_2O_7^{2-}((aq)) + 2NH_4^+((aq)) \rightarrow (NH_4)_2Cr_2O_7((s))$ State symbols not required	(1 mark)
	(iii)	The orange colour would move towards the anode / + / left	(1 mark)
(c)	(i)	$18 \times 2 + 52 \times 2 + 16 \times 7 = 252$ (g / g mol ⁻¹) Penalise incorrect units eg 252 g ⁻¹ in (i) and (ii) only once.	(1 mark)
	(ii)	0.1 mol has a mass of 25.2 (g) ALLOW TE	(1 mark)
	(iii)	100 cm ³ / 0.1 dm ³ must have units	(1 mark)
	(iv)	Filter (1) Wash with (small quantity) / (cold) water (1) Dry between filter papers / in a warm oven (< 40 °C) / in a dessicator	(3 marks)
	(v)	Some remains in solution Some lost on washing Transfer loss eg on glassware, filter paper	
			(2 marks)
			(Total 13 Marks)

thermal decomposition / redox (a) NOT reduction or oxidation on their own (1 mark) (b) (i) Formation of 1 mole of the compound/substance (1) from its elements (1) in their standard states/ under standard conditions/ (temperature and pressure) at 298K and 1 atmosphere pressure (1) (3 marks) (ii) $4H_2(g) + 3\frac{1}{2}O_2(g) + 2Cr(s)$ Cr₂ loses formula mark (2 max) Mark independently formulae (1) number of moles (1) arrows and state symbols (1) – depend on one mark being given for the above. (3 marks) $0 / \text{zero} (kJ \text{ mol}^{-1})$ (iii) (1 mark) $4 \times -242 + -1140 (OR - 2108) - -1810$ (1) (iv) -298 kJ mol⁻¹ value (1) (3 marks) signs and units (1) dependent on value being one of these given (c) Exothermic + attempt at explanation (1) Bonds are formed when a gas turns to a liquid (1) ACCEPT answers based on kinetic theory Evaporation is endothermic (therefore by Hess's Law) the reverse must be exothermic (2 marks) (Total 13 Marks)

8

END