edexcel 쁯

GCE
 Edexcel GCE
 Chemistry Nuffield(8086/ 9086)

J anuary 2005

Mark Scheme

Edexcel GCE
Chemistry Nuffield (8086/ 9086)

Unit 6251/01

SECTION A

1 Magnesium or beryllium
2 Only penalise wrong or missing units once in parts (a) \& (b).
(a) $24 \mathrm{dm}^{3}$ OR $24000 \mathrm{~cm}^{3}$
(b) $48 \mathrm{dm}^{3}$ OR $48000 \mathrm{~cm}^{3}$

3 (a) Reduction - gained electron(s)/ decrease in oxidation number
(b)

(c) Na^{+}or Mg^{2+} or Al^{3+}

$$
\mathrm{Ne} / \mathrm{Neon}
$$

$$
\mathrm{F}^{-} \text {or } \mathrm{N}^{3-}
$$

4 Too many electrons
No electrons between the positive ions
Positive ions touching / should have gaps

Check words like ion / molecule / atom / electron / are correctly used to award full marks

SECTION B

5 (a) Isomer(s)
(b) B and C
(c) A
(d) 2-methylpropan-2-ol
(e) D and E
(f) (i) Removal of water
(ii) Alkene / $\mathrm{C}=\mathrm{C} /$ carbon carbon double bond
(iii)

(1)

2-methylprop-1-ene (1)
$6 \quad$ (a) $\quad . .2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}(1) 4 p^{6} 5 s^{2}(1)$
(b) (i) $\mathrm{Sr}(\mathrm{g}) \rightarrow \mathrm{Sr}^{+}(\mathrm{g})+\mathrm{e}^{-}$

Formulae (1)
State symbols (1)
(ii) ALL increasing (1)

Jump between second and third larger than between any other pair (1)
(c) Provide red colour
(d) (i) Sr^{2+}
(ii) $\mathrm{Sr}(\mathrm{OH})_{2}$
(e) (i) $\mathrm{Sr}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Sr}(\mathrm{OH})_{2}($ aq or s$)+\mathrm{H}_{2}(\mathrm{~g})$

Formula, H_{2} and balancing (1)
state symbols (1)
(ii) $\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{SrCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Formulae and balancing (1)
State symbols (1)
(f) Any number from 8 to 12 inclusive
(b) (i) (2) NH_{4}^{+}and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}((\mathrm{aq}))+2 \mathrm{NH}_{4}^{+}((\mathrm{aq})) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}((\mathrm{~s}))$

State symbols not required
(iii) The orange colour would move towards the anode / + / left
(c) (i) $18 \times 2+52 \times 2+16 \times 7=252\left(\mathrm{~g} / \mathrm{g} \mathrm{mol}^{-1}\right)$

Penalise incorrect units eg $252 \mathrm{~g}^{-1}$ in (i) and (ii) only once.
(ii) 0.1 mol has a mass of 25.2 (g)

ALLOW TE
(iii) $100 \mathrm{~cm}^{3} / 0.1 \mathrm{dm}^{3}$ must have units
(iv) Filter

Wash with (small quantity) / (cold) water (1)
Dry between filter papers / in a warm oven ($<40^{\circ} \mathrm{C}$) / in a dessicator
(v) Some remains in solution

Some lost on washing
Transfer loss eg on glassware, filter paper

8 (a) thermal decomposition / redox NOT reduction or oxidation on their own
(b) (i) Formation of 1 mole of the compound/substance (1) from its elements (1)
in their standard states/ under standard conditions/ (temperature and pressure) at 298 K and 1 atmosphere pressure (1)
(ii)

Mark independently formulae (1)
number of moles (1)
arrows and state symbols (1) - depend on one mark being given for the above.
(iii) $0 /$ zero $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
(iv) $4 \times-242+-1140(O R-2108)--1810(1)$
$-298 \mathrm{~kJ} \mathrm{~mol}^{-1}$
value (1)
signs and units (1) dependent on value being one of these given
(c) Exothermic + attempt at explanation (1)

Bonds are formed when a gas turns to a liquid (1)
ACCEPT answers based on kinetic theory
Evaporation is endothermic (therefore by Hess's Law) the reverse must be exothermic

END

