UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

Specimen for 2007

GCE A LEVEL

MARK SCHEME
MAXIMUM MARK: 100
SYLLABUS/COMPONENT: 9701/04
CHEMISTRY
PRACTICAL

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL -2007	9701	4

Section A

1 (a) (i) $2 \times 80 \mathrm{~g}$ of Br_{2} produce $24 \mathrm{dm}^{3}$ of CO_{2}
Thus 3.2 g of Br_{2} will produce $\frac{3.2 \times 24}{2 \times 80}=0.48 \mathrm{dm}^{3}$
(ii) Colorimetrically : withdraw samples periodically
measure absorbance
plot absorbance against time
OR
lodometrically : oxidising I^{-}to I_{2}
by Br_{2}
titrating with thiosulphate
(Allow titration of H^{+}or evolution of CO_{2} if some mention of solubility.)
(b) (i) Reaction has a constant half-life evidence from graph that $t(1 / 2)$ is constant
(ii) Rate $=\left[\mathrm{Br}_{2}\right]$
(iii) At least two measurements of half-life from first graph Calculation of mean (say 200 secs)

Total :10

2 (a) The standard enthalpy change of formation of a compound is the enthalpy change when one mole of a compound is formed (under standard conditions) (1) from its elements in their standard states.
(b) Suitable cycle clearly labelled showing all three values
(c) (i) $298 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) In Data Booklet $\mathrm{Si}-\mathrm{Cl}$ bond energy is $210 \mathrm{~kJ} \mathrm{~mol}^{-1}$. SiC_{4} is not a gas under standard conditions
[2]
(d) (i) $\mathrm{SiCl}_{3} \mathrm{H}+\mathrm{H}_{2} \longrightarrow \mathrm{Si}+3 \mathrm{HCl}$
(ii) From the Data Booklet, $\mathrm{E}_{\mathrm{Si}-\mathrm{Cl}}=359, \mathrm{E}_{\mathrm{H}-\mathrm{Cl}}=431, \mathrm{E}_{\mathrm{H}-\mathrm{Br}}=366 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Per Si-hal bond, for $\mathrm{SiCl}_{3} \mathrm{H}, \Delta \mathrm{H}=359-431=-72$, for $\mathrm{SiBr}_{3} \mathrm{H}, \Delta \mathrm{H}=298-366=-68$ (1) therefore the reaction with $\mathrm{SiBr}_{3} \mathrm{H}$ will be less exothermic i.e. overall reaction would be more endothermic
OR $\Delta \mathrm{H}_{\text {reaction: }}$ for $\mathrm{SiCl}_{3} \mathrm{H}, \Delta \mathrm{H}_{\text {reaction }}=+96$, and for $\mathrm{SiBr}_{3} \mathrm{H}, \Delta \mathrm{H}_{\text {reaction }}=+108$
therefore overall reaction is more endothermic
(1)
(iii) Manufacture of semiconductors (or equivalent)

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - 2007	9701	4

3 (a) $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
[2]
(b) To neutralise acid soils

To improve soil 'quality' by precipitating clays (or equivalent)
(c) The temperature increases

As the Group is descended, the cation increases in size
Thus ability of the cation to polarise the anion decreases, increasing the stability of the carbonate.
(d) (i) $\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}+4 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{MgCl}_{2}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(ii) M_{r} of dolomite is $40+24+(2 \times 60)=184$

184 g of dolomite should produce $2 \times 44 \mathrm{~g}$ of CO_{2}
Hence 1 g of dolomite should give $\frac{88}{184} \mathrm{~g}$ of $\mathrm{CO}_{2}=0.478 \mathrm{~g}$
\% purity of the dolomite is $\frac{0.450 \times 100}{0.478}=94.1 \%$

4 (a) (i) $[\operatorname{Ar}] 3 d^{10} 4 s^{1}$
(ii) $[\mathrm{Ar}] 3 d^{10}$
(iii) $[\mathrm{Ar}] 3 \mathrm{~d}^{9}$
(b) Any four of the following points:

- colour due to absorption of certain visible frequencies
- d-orbitals are split into two groups by presence of ligands
- light absorbed when e^{-}moves from lower to higher orbital
- this needs a gap in the higher orbital, so d^{10} in $\mathrm{Cu}(\mathrm{I})$ is not coloured
- if CuCl_{2} is blue, then photons absorbed must be red ones
(c) (i) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{H}_{2} \mathrm{O}$
$\left(\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}\right)$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{OH}^{-}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{equation*}
\left(o r \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}\right) \tag{2}
\end{equation*}
$$

(ii) These are ligand exchange reactions.
$\mathrm{H}_{2} \mathrm{O}$ is exchanged for OH^{-}, and $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}are exchanged for NH_{3}.
(2)

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL -2007	9701	4

5 (a) Van der Waals forces increase with the number of electrons present Since this allows larger dipoles and hence stronger attractive forces
(b) (i) Description of $\mathrm{C} t, \mathrm{Br}^{-}$, and I^{-}with conc sulphuric acid Use of E^{\ominus}
(ii) Description of $\mathrm{HCl}, \mathrm{HBr}$ and HI
$3 \times(1)$ Use of E°

6 (a)

element	$\%$	A_{r}	$\% / A_{r}$	ratio
C	40.0	12	3.33	1
H	6.65	1	6.65	2
O	53.3	16	3.33	1

(b) (i) It contains an asymmetric carbon atom
(ii) It contains a carboxylic acid group
(iii) It contains a $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$ - or $\mathrm{CH}_{3} \mathrm{CO}$ - group

(c) Displayed formula of 2-hydroxypropanoic acid
(d) Displayed formula of the ketone of the above
(e) Displayed formula of the cyclic di-ester

Ester
(1)
[2]
(f) Displayed formula of 3-hydroxypropanoic acid

Compound C is $\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - 2007	9701	4

7
(a) (i) 1. amine
2. carboxylic acid
3. amide 4. ester
(2)
(ii) 1. amine
2. carboxylic acid
Both can form ions (both polar groups) by gain or loss of a proton from water or form hydrogen bonds with water
(b) (i) Allow conc. HCl and heat or conc. NaOH and heat
$2 \times(1)$
(ii) Diagrams of aspartic acid, phenylalanine and methanol
$3 \times(1)$
(c) It could be decomposed/hydrolysed during cooking

Section B

8 (a) 6 points from the following :

- 2 strands of DNA separate
- mRNA reads the 'code'/base sequence on the DNA
- mRNA moves out of the nucleus
- mRNA binds to the ribosome
- tRNA binds to amino acids
- amino acids are transferred to ribosome and joined to growing chain
- until Stop codon is reached
(b) Each amino acid needs 3 bases to code for it
$3 \times 129=387$, which leaves 3 bases to code for Start and 3 for Stop
(c) (i) A variety of answers possible e.g.
- sickle cell disease
- thallassemia
- cystic fibrosis
- haemophilia etc.
(ii) A suitable symptom e.g.
- Deformed red blood cells
- Restricts production of haemoglobin
- Mucous lining of lungs thickens
- Poor clotting of blood/bleeding under the skin

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL -2007	9701	4

9 (a)

$\%$					
	$\%$	$\% / A_{r}$	Ratio		
C	78.7	6.56	8	$)$	Empirical formula
H	8.2	8.2	10	$)(1)$	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$
O	13.1	0.82	1)	

$M_{\mathrm{r}}=122$, hence this molecular formula
Molecular formula is $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$
(b) $1.2 \delta \quad-\mathrm{CH}_{3}$
$2.5 \delta-\mathrm{CH}_{2}$
$5.5 \delta-\mathrm{OH}$
6.8δ aryl hydrogens $\times 4$
Hence structure is

(or ethyl phenol isomers)
(1)

Due to rapid exchange with D^{+}which does not absorb here
(c) Peak at 5.5δ would disappear
(d)
(d)

Two sensible suggestions
(2)

10 (a) Can be used as a fuel (for generating electricity)
(1)

Can be hydrolysed (using acid or enzymes) and the sugars fermented
(b) Carbon dioxide
(c) $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{n}}+\mathrm{nH}_{2} \mathrm{O} \rightarrow \mathrm{nC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(d) Ethanol has an -OH group and so can be washed away

Gasoline is a hydrocarbon and is not soluble in water Gasoline requires detergent which can add to the pollution Ethanol is biodegradable

