UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

Specimen for 2007

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY PRACTICAL

	P	age	2	Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – 2007	9701	4	
Section A							
1	(a)	(i)	2 x 80g d	of Br ₂ produce 24 dm ³ of CO ₂	(1)		
			Thus 3.2	2 g of Br ₂ will produce $\frac{3.2 \times 24}{2 \times 80} = 0.48 \text{ dm}^3$	(1)		
		(ii)	Colorime	etrically : withdraw samples periodically measure absorbance plot absorbance against time	(1) (1) (1)		
			lodometr	rically: oxidising I^- to I_2 by Br_2 titrating with thiosulphate	(1) (1) (1)		
			(Allow tit	ration of H ⁺ or evolution of CO₂ if some mention of solubi	lity.)	[5]	
	(b)	(i)		n has a constant half-life e from graph that t(1/2) is constant	(1) (1)		
		(ii)	Rate = [E	Br₂]	(1)		
		(iii)		two measurements of half-life from first graph ion of mean (say 200 secs)	(1) (1)	[5]	
						Total :10	
2	(a)	cha	e standard inge wher n its elem	nalpy nditions) (1) (1) [2]		
	(b)	Sui	table cycl	e clearly labelled showing all three values		[2]	
	(c)	(i)	298 kJ m	nol ⁻¹	(1)		
		(ii)		Booklet Si-C <i>l</i> bond energy is 210 kJ mol ⁻¹ . not a gas under standard conditions	(1)		
						[2]	
	(d)	(i)	SiC <i>l</i> ₃ H	+ $H_2 \longrightarrow Si + 3HCl$	(1)		
		(ii)) From the Data Booklet, $E_{Si-Cl} = 359$, $E_{H-Cl} = 431$, $E_{H-Br} = 366$ kJ m Per Si-hal bond, for SiC l_3 H, Δ H= 359 - 431 = -72, for SiB l_3 H, Δ H therefore the reaction with SiB l_3 H will be less exothermic i.e. over be more endothermic (1) OR l_3 H, l_4 H l_6 H l_7 H l_8 H $l_$				
				e overall reaction is more endothermic (1)	, 100	(')	
		(iii)	Manufac	cture of semiconductors (or equivalent)	(1)	[4]	
						Total : 10	
						. J.u 10	

© University of Cambridge International Examinations 2006

	P	age	3	Mark Scheme S	yllabus	Paper
				GCE A LEVEL – 2007	9701	4
3	(a)	Ca	CO ₃ —	CaO + CO ₂	(1)	
		Ca	O + H ₂ C	(1)	[2]	
	(b)	То	neutralise	(1)	[-]	
		To	improve s	oil 'quality' by precipitating clays (or equivalent)	(1)	[2]
	(c)		•	ture increases	(1) (1)	
		As the Group is descended, the cation increases in size Thus ability of the cation to polarise the anion decreases, increasing the stability of the carbonate.				
					(1)	[3]
	(d)	(i)	CaMg(Co	$O_3)_2 + 4HCl \longrightarrow CaCl_2 + MgCl_2 + 2CO_2 + 2H_2O$	(1)	
		(ii)		omite is 40 + 24 + (2 x 60) = 184	(1)	
			184 g of	dolomite should produce 2 x 44 g of CO ₂		
			Hence 1	g of dolomite should give $\frac{88}{184}$ g of $CO_2 = 0.478$ g		
			% purity	of the dolomite is $\frac{0.450 \times 100}{0.478} = 94.1\%$	(1)	.
						[3]
4	(a)	(i)	[Ar] 3d ¹⁰	4s ¹		Total : 10
		(ii)	[Ar] 3d ¹⁰			
		(iii)	[Ar] 3d ⁹			[2]
	(b)	Any • • •	d-orbitals light abso this need	ne following points: ue to absorption of certain visible frequencies as are split into two groups by presence of ligands orbed when e moves from lower to higher orbital des a gap in the higher orbital, so d 10 in Cu(I) is not coloured as blue, then photons absorbed must be red ones		[4]
(0)	(i)					[-7]
(6)	(1)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			(2)	
	(ii)				\ - /	
	\ <i>/</i>		_	nged for OH ⁻ , and H ₂ O and OH ⁻ are exchanged for NH ₃ .	(2)	[4]
						[Total : 10]

[Total : 10]

Page 4				Mark Scheme				Syllabus	Paper		
				GCE A LEVEL - 2007					9701	4	
5	(a)		n der Wa	(1) (1)		[2]					
	(b)	(i)	Descripti Use of E	3 x (1) (1)							
		(ii)	Descripti Use of E	on of HC <i>l</i> , F	lBr and HⅠ				3 x (1) (1)		[8]
										Total :	: 10
6	(a)										
			element	t	%	$A_{\rm r}$	% / A _r	ratio			
			С		40.0	12	3.33	1			
			Н								
			0		53.3						
											[1]
	(b)	(i)	It contain	ins an asymmetric carbon atom							
		(ii)	It contair	ns a carboxylic acid group							
		(iii)	It contair	ns a CH₃CH((1)						
		(iii) It contains a CH ₃ CH(OH)- or CH ₃ CO- group							()		[3]
	(c)	Displayed formula of 2-hydroxypropanoic acid									[1]
	(d)	Displayed formula of the ketone of the above									[1]
	(e)	Displayed formula of the cyclic di-ester Ester							(1) (1)		[2]
	(f)	Displayed formula of 3-hydroxypropanoic acid							(1)		
		Cor	npound C		(1)		[2]				
										Total:	: 10

Total: 10

Page 5				Mark Scheme	Syllabus	Paper				
				GCE A LEVEL – 2007	9701	4				
7	(a)	(i)	1. amine	2. carboxylic acid						
			3. amide	4. ester	(2)					
		(ii)	1. amine	2. carboxylic acid form ions (both polar groups) by gain or loss of a	(1)					
				om water						
			<u>or</u> form h	nydrogen bonds with water	(1)	[4]				
	(b)	(i)	Allow co	nc. HC <i>l</i> <u>and</u> heat or conc. NaOH <u>and</u> heat	2 x (1)					
		(ii)	Diagram	s of aspartic acid, phenylalanine and methanol	3 x (1)	[5]				
	(c)	It co	ould be de	ecomposed/hydrolysed during cooking		[1]				
						Total :10				
				Section B						
•	/- \	C	-:	Ale e fellouis en						
8	(a)	(a) 6 points from the following:								
	2 strands of DNA separate mRNA reads the 'code'/base sequence on the DNA									
		mRNA reads the 'code'/base sequence on the DNAmRNA moves out of the nucleus								
				A binds to the ribosome						
				A binds to amino acids o acids are transferred to ribosome and joined to growing chain						
				il Stop codon is reached	[6]					
	(b)	Eac	th amino a	acid needs 3 bases to code for it	(1)					
		3 x	129 = 387	7, which leaves 3 bases to code for Start and 3 for Stop	(1)	[2]				
	(c)	(i)	-	of answers possible e.g.						
				le cell disease assemia						
				ic fibrosis						
			• haeı	mophilia etc.	(1)					
		(ii)	A suitabl	e symptom e.g.						
				ormed red blood cells						
				tricts production of haemoglobin cous lining of lungs thickens						
				r clotting of blood/bleeding under the skin	(1)	[2]				
						Total : 10				

	P	Page 6					Syllabus	Paper
				GCE A L	EVEL – 20	007	9701	4
9	(a)	%	%/A _r	Ratio				
		C 78.7 H 8.2 O 13.1	6.56 8.2 0.82	8 10 1)) (1))	Empirical formula C ₈ H ₁₀ O	(1)	
			nce this molecu mula is C ₈ H ₁₀ C				(1)	[3]
	(b)	1.2δ - CH ₃					(1)	
		2.5δ - CH ₂					(1)	
		5.5δ - OH					(1)	
		6.8δ aryl hyd	lrogens x 4				(1)	
		Hence structi	ure is	CH₃CH ₃	27	-OH	(1)	
		(or ethyl pher	nol isomers)					[5]
	(c)	Peak at 5.5δ	would disappe	ear			(1)	
		Due to rapid	exchange with	D ⁺ which do	es not ab	sorb here	(1)	[2]
	(d)	CH₃OCH	J ₂ -	or isomers			(1)	
		Two sensible	suggestions				(2)	[3]
								Total : 12
10	(a)	Can be used	as a fuel (for g	jenerating el	ectricity)		(1)	
		Can be hydro	olysed (using a	cid or enzyn	nes) and t	he sugars fermented	(1)	[2]
	(b)	Carbon dioxid	de					[1]
	(c)	(C ₆ H ₁₀ O ₅) _n -	$+ \text{ nH}_2\text{O} \rightarrow \text{nC}$	C ₆ H ₁₂ O ₆				[1]
	(d)	Gasoline is a	an –OH group a hydrocarbon a uires detergent	and is not so	luble in w	rater		
		Ethanor is bit	acgi adabi c				(any 3)	[3]
								Total : 7