

CHEMISTRY

9701/41 October/November 2018

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

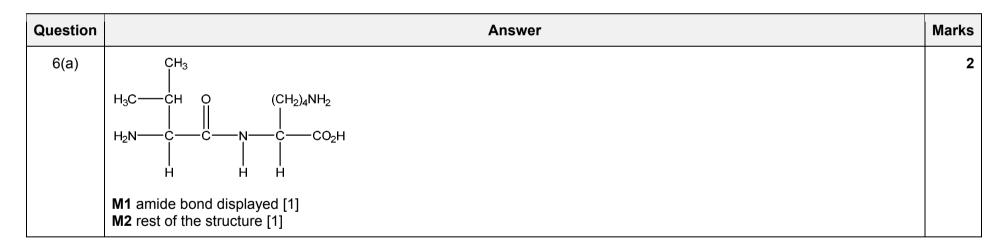
Question			Answe	er	Marks
1(a)(i)	peak	organic compound	explanation		2
	x	alkane	London forces only OR no hydrogen bonding		
	Y	aldehyde	(Permanent dipole-dipole and London forces)		
	Z	carboxylic acid	(contains) hydrogen bonding		
		assignments [1] Ination of Z OR X [1]			
1(a)(ii)	% of Z =	47/98 = 48%			1
1(b)(i)	³⁷ Cl and	⁸¹ Br			1
1(b)(ii)	two corre	$CH_2^{35}Cl^{79}Br$ k $CH_2^{37}Cl^{79}Br$ OR Cl k $CH_2^{37}Cl^{81}Br$ ect scores 1 mark ect scores 2 marks	H₂ ³⁵ Cℓ ⁸¹ Br		2
1(c)(i)	M2 two c		$H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} H_{3$	$H_{3}C - C + CH_{3}$ $Br + CH_{3}$ $H_{3}C - C + CH_{3}$	3

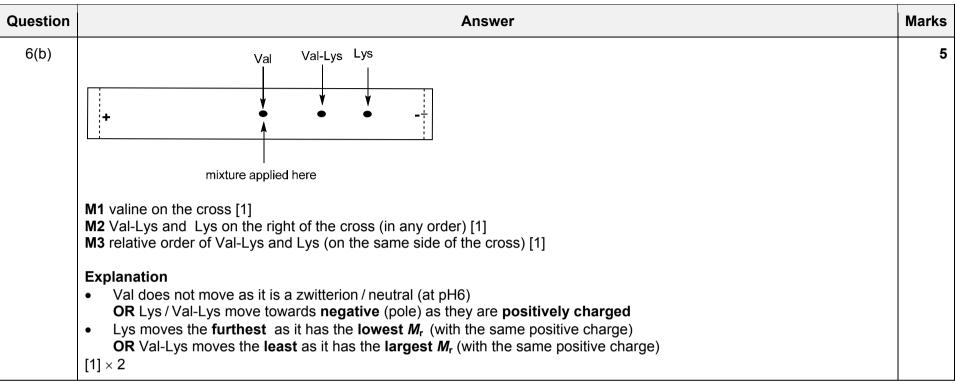
Question	Answer	Marks
1(c)(ii)	(major product is) formed via the most stable tertiary carbocation / intermediate OR tertiary halogenoalkane formed via more stable carbocation / intermediate	1
1(d)(i)	M1 ratio of the concentrations of solute in two (immiscible) solvents [1] M2 at equilibrium [1]	2
1(d)(ii)	$K_{\text{partition}} = (x/10)/(1.25-x/50) [1]$ 4.75(1.25-x) = 5x x = 5.9375/9.75 = 0.61 g [1] correct answer scores [2]	2

Question	Answer	Marks
2(a)	species that forms dative bond(s) to a (central) metal atom / ion	1
2(b)	any two structures [1] × 2	2
2(c)(i)	$K_{sp} = [Ca^{2+}][C_2O_4^{2-}][1]$ units mol ² dm ⁻⁶ [1]	2
2(c)(ii)	$[Ca^{2+}] = [C_2O_4^{2-}] = 6.65 \times 10^{-3}/128.1 = 5.19 \times 10^{-5} \text{ mol dm}^{-3} [1]$ $\mathcal{K}_{sp} = (5.19 \times 10^{-5})^2 = 2.7 \times 10^{-9} \text{ mol}^2 \text{ dm}^{-6} [1]$	2

Question				Answer	Marks	
3(a)	[1] for each column					
			of unpaired rons in			
	element	3d	4s			
	Cr	5	1			
	Mn	5	0			
	Fe	4	0			
3(b)	$\begin{array}{l} 2KMnO_4 \rightarrow K_2MnO_4 + O_2 + MnO_2 \\ \text{formulae of } K_2MnO_4 \text{ and } O_2 \ [1] \\ \text{rest of the equation [1]} \end{array}$					
3(c)	M1 d orbitals split in M2 visible light is ab M3 electron(s) prom	sorbed and t	he complement	er orbitals [1] Itary colour observed [1]	3	
3(d)(i)	precipitate A $[Cu(H_2O)_4(OH)_2]$ OR $Cu(OH)_2$ [1] solution B $[Cu(NH_3)_4(H_2O)_2]^{2+}$ [1] solution C $Cu(CH_3CO_2)_2$ [1]				3	
3(d)(ii)	Na ₂ CO ₃ or CO ₃ ²⁻				1	
3(d)(iii)	$CuCO_3 + 2CH_3CO_2H \rightarrow Cu(CH_3CO_2)_2 + CO_2 + H_2O$					
3(d)(iv)	fizzing / bubblessolid disappear	 any two for one mark fizzing / bubbles / effervescence solid disappears 				

Question	Answer	Marks
3(e)	sum of the charges of the (four) ligands equals the oxidation number / charge of Pt OR a calculation Pt +2, NH ₃ neutral / no charge, both $Cl^{-i}s -1$ (so no overall charge)	1
3(f)(i)	$\begin{array}{c} CI \\ H_{3}N \end{array} \xrightarrow{Pt} CI \\ I] \\ square planar and 180° [1] \end{array}$	2
3(f)(ii)	M1 this can bond / bind with DNA [1] M2 which prevents replication of the DNA / strand OR prevents cell division [1]	2
3(g)	H ₃ N O O O O O O O O O O O O O O O O O O O	1


Question	Answer	Marks
4(a)	M1 solubility decreases (down the Group) [1] M2 because lattice energy and hydration energy decreases OR lattice energy and hydration energy become less exothermic / more endothermic [1] M3 because hydration energy decreases to a greater extent (than does ΔH_{Latt}) [1]	3
4(b)(i)	$(\mathcal{K}_{w} =) [H^{+}][OH^{-}]$	1


				JELISHED		
Question				Answer		Marks
4(b)(ii)	[1] or each correct tick					
	effect of increasing temperature	decreases	stay the same	increase		
	рН	~				
	ratio of [H⁺]:[OH⁻]		\checkmark			
4(c)	$[H^+] = 10^{-13.25} = 5.62 \times 1$ $[OH^-] = K_w/[H^+] = 1.0 \times 1$ $[OH^-] = 0.18 (0.178) (model)$	$10^{-14}/5.62 \times 10^{-14}$	p ⁻¹⁴ of correct answer s	cores [2]		2
4(d)	$\begin{array}{rcl} HCO_3^- + \ H^+ \ \rightarrow \ H_2CO_3 \ \mathbf{OR} \ HCO_3^- + \ H^+ \ \rightarrow \ CO_2 \ + \ H_2O \ [1] \\ H_2CO_3 \ + \ OH^- \ \rightarrow \ HCO_3^- \ + \ H_2O \ [1] \end{array}$					2
4(e)(i)	$CH_{3}COOH + H_{2}O \rightleftharpoons CH_{3}COO^{-} + H_{3}O^{+}[1]$ acid + base \approx base + acid [1]					2
4(e)(ii)				-	DOH = 0.25 × 30/1000 OR 0.0075 [1]	4
	M2 equilibrium moles C	H₃COOH = 0. (0045 AND equilibri	um moles CH	₃ COONa = 0.0030 [1]	
	M3 [CH ₃ COOH] = 0.0045/0.05 = 0.090 AND [CH ₃ COONa] = 0.003/0.05 = 0.060 [H ⁺] = $K_a \times$ [CH ₃ COOH]/[CH ₃ COONa] = 2.625 × 10 ⁻⁵ [1]					
	M4 pH = -log[H ⁺] = 4.6	[1] correct an	swer scores [4]			
4(f)(i)	end point = 28 cm ³					1
4(f)(ii)	M1 reaction M bromoth	iymol (blue)/b	romocresol (green) AND reaction	n N bromothymol (blue) / thymolphthalein [1]	2
	M2 (both indicators hav	e) a pH range	/ colour change wi	thin / in end-µ	ooint / vertical region / sharp fall of the graph [1]	

October/November 2018

Question				Answer		Marks
5(a)(i)	[1] for each correct answer					
	number of pe	aks				
	F 3					
	G 6					
5(a)(ii)	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				2	
	rest of the structure – on	e repeat unit only	/ [1]			
5(b)	[1] for each correct tick					
		σ-bonds only	π -bonds only	both σ - and π -bonds		
	bonds broken		~			
	bonds formed	~				

Question	Answer	Marks
5(c)	$\begin{array}{c} - C_{6}H_{5} & H & - CH_{3} & H \\ - C & - C & - C & - C \\ - H & H & - H \end{array}$ M1 length of chain with both monomers [1] M2 continuation bonds [1]	2
5(d)(i)	C-C bonds are non-polar / have no dipole so cannot be hydrolysed [1]	1
5(d)(ii)	M1 <u>Hydrolysis</u> using acid / base / alkali / enzymes [1] M2 action of UV light [1]	2

Question	Answer	Marks
7(a)	M1 C-X/C-C l /C-O bond is strong er (in chlorobenzene / phenol) [1] M2 p-orbital / lone pair on C l /O(H)/X (in chlorobenzene / phenol) [1] M3 electrons of the (C l /O/electronegative atom) AND overlap/delocalise with π -electron cloud/delocalise into ring [1]	3

Question	Answer	Marks
7(b)	$ \begin{array}{c} \stackrel{OH}{\underset{2-bromophenol}{\overset{PH}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{$	2
7(c)(i)	step 1 conc. $HNO_3 + H_2SO_4$ (and temperare 50–55 °C) [1] step 2 Sn + HCl AND one of conc. HCl + heat [1] step 4 H_2O warm / heat [1]	3
7(c)(ii)		1
7(c)(iii)	step 1 electrophilic substitution	1
7(c)(iv)	$C_6H_5NO_2 + 6[H] \rightarrow C_6H_5NH_2 + 2H_2O$	1

Question		Answer	Marks		
8(a)	S/JK ⁻¹ mol ⁻¹ 0 100 100 200 300 temperature/K M1 continuous increase in S from 0–300 K (excluding m.p.) [1] M2 steep vertical increase in S ONLY at the m.p. AND continuous increase in S after m.p. [1]				
8(b)	[1] for each correct tick	`	1		
	negative	ΔS^{\bullet} positive ΔS^{\bullet}			
	solid dissolving in water	✓			
	water boiling to steam	\checkmark			
8(c)	$\Delta H^{e} = (2 \times C=O) + (3 \times H-H) - (3 \times C)$ $\Delta H^{e} = (2 \times 805) + (3 \times 436) - (3 \times 410)$ $\Delta H^{e} = 1610 + 1308 - 1230 - 360 - 130$		[2]		
8(d)(i)	$\Delta S^{\circ} = 127 + 70 - (214 + 3 \times 131) [1]$ = - 410 (J K ⁻¹ mol ⁻¹) [1] ecf correct answer scores [2]				
8(d)(ii)	$\Delta G^{e} = \Delta H^{e} - T\Delta S^{e} [1]$ $\Delta G^{e} = -131 - (298 \times -0.41) = - 8.8(2)$	(kJ mol ⁻¹) [1] correct answer scores [2]	2		

Question	Answer	Marks
8(d)(iii)	(as temperature increases) feasibility decreases	1
8(e)(i)	$2CH_3OH + 3O_2 \rightleftharpoons 2CO_2 + 4H_2O \mathbf{OR} 2CH_3OH + 3O_2 \rightleftharpoons 2CO_2 + 4H^+ + 4OH^-$	1
8(e)(ii)	<i>E</i> [⊕] _{cell} = 1.23 − 0.02 = 1.21 ∨	1