MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

1 In this question, numerical answers should be given to three significant figures.

(a) (i)
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
 (1)

(ii)
$$M_{\rm r} \, {\rm C}_6 {\rm H}_{12} {\rm O}_6 = 180$$
 (1)
180 g ${\rm C}_6 {\rm H}_{12} {\rm O}_6 \rightarrow 6 \, {\rm mol} \, {\rm CO}_2$

$$1200 \text{ g } C_6 \text{H}_{12} \text{O}_6 \rightarrow \underline{6 \times 200} \text{ mol } \text{CO}_2$$
180

allow ecf on wrong equation and/or wrong
$$M_{\rm r}$$
 (1)

(iii) 6.82×10^9 people will produce $6.82 \times 10^9 \times 40.0$ mol CO₂

$$= 2.728 \times 10^{11} \,\mathrm{mol}\,\mathrm{CO}_2 \tag{1}$$

 $2.728 \times 10^{11} \text{ mol } \text{CO}_2 \equiv 2.728 \times 10^{11} \times 44 = 1.20032 \times 10^{13} \text{ g}$ = 1.20 × 10⁷ tonnes CO₂ to 3 sf (1) [5]

(b) (i) $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$ or $C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$ (1) (ii) $M_r C_8H_{18} = (8 \times 12) + (18 \times 1) = 114$ (1)

mass of 4.00 dm³ of octane =
$$4000 \times 0.70 = 2800$$
 g (1)

$$n(C_8H_{18}) = \frac{2800}{114} = 24.56140351 \text{ mol in } 4.00 \text{ dm}^3$$

$$= 24.6 \,\mathrm{mol} \,\mathrm{to} \,3\,\mathrm{sf}$$
 (1)

(iii) $2 \mod C_8 H_{18}$ produce $16 \times 44 \gcd CO_2$

24.6 mol C₈H₁₈ produce
$$\frac{16 \times 44 \times 24.6 \text{ g}}{2}$$
 CO2
= 8659.2 g CO₂

 $= 8660 \text{ g CO}_2 \text{ to } 3 \text{ sf}$ (1) [5]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

(c) 6.82×10^9 people produce 1.20×10^7 tonnes CO₂ per day

 8660 g CO_2 produced when car travels 100 km

when travelling 1 km, car produces
$$\frac{8660}{100} = 8.66 \times 10^{-1} \text{g}$$

= 8.66 × 10⁻⁵ tonnes (1)
to produce 1.20 × 10⁷ tonnes CO₂ car must travel
1.20 × 10⁷

$$8.66 \times 10^{-5}$$

= $1.385681293 \times 10^{11} = 1.39 \times 10^{11}$ km to 3 sf (1) [2]

(d) possible pollutants and the damage they cause

СО	NO _X		SO ₂	H₂O	6	unburned
00	NO	NO2	30_2	$\Pi_2 O$	C	C ₈ H ₁₈
toxic	toxic	toxic	toxic			
	global	respiratory	respiratory	global	respiratory	respiratory
	warming	problems	problems	warming	problems	problems
	photochemical smog	acid rain	acid rain			

compound damage

(1) (1) [2]

[Total: 14]

	Page 4			Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2012	Syllabus 9701	Paper 23	,
				GCE AS/A LEVEL - October/November 2012	9701	23	
2	(a)	(i)	white	e fumes/steamy fumes		(1)	
		(ii)		$Cl + H_2SO_4 \rightarrow NaHSO_4 + HCl or$ $Cl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$		(1)	
		(iii)		acid that is completely ionised in solution or acid that is completely dissociated into H ⁺ ions in solutio	on	(1)	[3]
	(b)	(i)	irrita	purple/violet vapour (I ₂) or black/brown solid (I ₂) or irritating/acrid gas (SO ₂) or stinking gas (H ₂ S) or yellow solid (S)			
		(ii)		c. H ₂ SO ₄ is an oxidising agent or HI is a reducing or which reduces H		(1) (1)	[3]
	(c)	(i)		e ppt formed – not creamy white or off white ch dissolves in NH ₃ (aq)		(1) (1)	
		(ii)		$Cl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NaNO_3(aq)$ or aq) + Ag ⁺ (aq) $\rightarrow AgCl(s)$			
				ation tate symbols correct		(1) (1)	
			-	$Cl(s) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2]^+ Cl^-(aq)$ or $Cl(s) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2] Cl(aq)$			
				ation tate symbols correct		(1) (1)	
		(iii)		cipitate is yellow cipitate does not dissolve		(1) (1)	[8]
						[Total:	14]

Page 5			5		Scheme: Tead					labus	Paper	,
				GCE AS/A	LEVEL – Octo	ber/	Novembei	201	2 9	701	23	
3	(a)			ture of ammoni nargarine or hy		ss o i	r hydrogen	ation	of fats/oils	or	(1)	[1]
	(b)	(i)	equi	easing the pre librium will mov er moles/molecu	e to LHS	mor	e moles/m	olecu	lles on RHS	6	(1) (1)	
		(ii)	equi	reasing the ter librium will mov ard reaction is o	e to LHS						(1) (1)	[4]
	(c)			increase s will occur mor	e frequently						(1) (1)	[2]
	(d)	(i)	<u>K_c =</u> [C	<u>[CO₂][H₂]</u> O][H ₂ 0]							(1)	
		(ii)			CO(g)	+	H ₂ O(g)	≓	CO ₂ (g)	+ H ₂ (g))	
			eq	ial moles uil moles uil concn./mol n ⁻³	0.40 (0.40 – y) <u>(0.40 – y)</u> 1		0.40 (0.40 – y) <u>(0.40 – y)</u> 1		0.20 (0.20 + y) <u>(0.20 + y)</u> 1	0.20 (0.20 <u>(0.20</u>) + y) <u>) + y)</u> 1	
			K _c =	$\frac{(0.20 + y)^2}{(0.40 - y)^2} = 6$.40 × 10 ^{−1}						(1)	
			•	<u>0 + y)</u> = √6.40 0 – y)	$10 \times 10^{-1} = 0.8$							
			· ·	0 + y) = 0.8 × (0	2 /							
				y + y = 0.32 - 0. y = 0.12	8 y							
				s y = 0.067							(1)	
			at eo	quilibrium								
				$O) = n(H_2O) = (0)$ $O_2) = n(H_2) = (0)$							(1)	
			allov	v ecf as approp	riate						[5]	
										[T	otal: 12]	

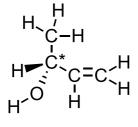
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

4 (a) (i)

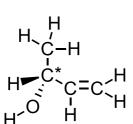
reaction	organic compound	reagent	structural formulae of organic product
А	CH₃CH(OH)CH₃	NaBH ₄	no reaction
В	CH ₃ COCH ₃	Tollens' reagent warm	no reaction
с	CH ₃ CO ₂ CH(CH ₃) ₂	KOH(aq) warm	CH ₃ CO ₂ K or CH ₃ CO ₂ [−] + (CH ₃) ₂ CHOH
D	(CH ₃) ₃ COH	Cr ₂ O ₇ ^{2−} /H ⁺ heat under reflux	no reaction
Е	CH ₃ COCH ₃	NaBH₄	CH ₃ CH(OH)CH ₃
F	(CH₃)₃COH	PC <i>l</i> ₅	(CH ₃) ₃ CC <i>l</i>
G	CH ₃ CH=CHCH ₂ OH	MnO₄⁻/H⁺ heat under reflux	CH ₃ CO ₂ H + HO ₂ CCO ₂ H

each correct answer gets 1

(9 × 1)


(ii)

reaction	colour at the beginning of the reaction	colour at the end of the reaction
G	purple	colourless
0	purple	not clear


(1 + 1 + 1) [12]

[Total: 12]

chiral centre clearly shown by*

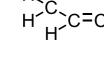
correct structure drawn fully displayed

`Η

(1)

(1)

(1)


[8]

[Total: 8]

(5 x 1)

(iii)

(ii)

H H H ^C C H	C ^H H
H	·C(

CH₂=CHCH(OH)CH₃

each correct answer gets 1

Η

CH₃CH=CHCH₂OH

CH₂=CHCH₂CH₂OH CH₃CH₂COCH₃ CH₃CH₂CH₂CHO

5 (a) (i)

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

J

Κ