CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/43

Paper 4 (Structured Questions), maximum raw mark 100

mmn. tiremen abers. com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9701	43

Qu	estion	Marking point	Marks
1	(a)	oxygen: $(1s^2) 2s^22p^4$ fluorine: $(1s^2) 2s^22p^5$	1
	(b) (i)	F ₂ O / OF ₂	1
	(ii)	F + F + F	1
	(iii)	bent or non-linear	1
	(c) (i)	E^{θ} values: $F_2/F^- = 2.87 \text{ V}$ and $Cl_2/Cl^- = 1.36 \text{ V}$	1
		fluorine (has the more positive E ^e so) is more oxidising	1
	(ii)	redox	1
	(iii)	$ClF + 2KBr \longrightarrow KCl + KF + Br_2$	1
			[Total: 8]
2	(a) (i)	hydrogen chloride or HC <i>l</i>	1
	(ii)	 either (RCOC<i>l</i>) has two electron-withdrawing groups/atoms, making the more δ+/electron deficient or (RCOC<i>l</i>) has an oxygen, making the carbon more δ+/electron deficient or (RCOC<i>l</i>) has two electron-withdrawing groups, weakening the C–C<i>l</i> bond 	1
	(b) (i)	CH_3 CH_3 CH_3 Q	1
	(ii)	step 1: heat with MnO ₄ ⁻ /KMnO ₄ (+ acid or alkali)	1
		step 2: PCl_3 + heat or $SOCl_2$ or PCl_5	1
		step 4: LiA <i>l</i> H₄ (in dry ether)	1
			[Total: 7]

Page 3	Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9701	43

			1	-	_
3	(a) (i)	isotope	relative abundance		1
		²⁴ Mg	78–79		
		²⁵ Mg	10		
		²⁶ Mg	12–11		
				(total must add up to 100 %)	
	(ii)	e.g. 0.78x24 + 0.1	0x25 + 0.12x26 =	24.34	1
	(b) (i)	nitrates become n	nore stable (down	the group)	1
		as the ionic radius or charge density		creases	1
		decreasing its abi	lity to distort/pola	rise the NO ₃ ⁻ /nitrate ion	1
	(ii)	$4\text{LiNO}_3 \longrightarrow 2\text{L}$	i ₂ O + 4NO ₂ + O ₂		1
	(iii)	the charge densi sufficiently so the		ions are too small (to polarise the anion ble)	1
					[Total: 7]
4	(a) (i)	$K_{sp} = [Ag^{+}(aq)]^2[Se^{-\frac{1}{2}}]$	O ₄ ^{2–} (aq)] and unit	s: mol ³ dm ⁻⁹	1
	(ii)	$K_{sp} = (2 \times 0.025)^2$	$K_{sp} = (2 \times 0.025)^2 \times (0.025) = 6.25 \times 10^{-5}$		
	(b)	Ag ₂ S	ΔH^{0}_{1a} $SO_{4}(s)$ ΔH^{0}_{5}	ΔH ^o _{hyd}	1 1 1
	(c) (i)	$E^{\circ}_{\text{cell}} (= 0.80 - 0.7)$	7 =) (+) 0.03V and	I Ag ⁺ /Ag <i>or</i> Ag/silver <i>or</i> right	1
	(ii)	E _{cell} would be less			1
	, ,			ectrode) is less than 1.0 mol dm ⁻³	
	(iii)	no change		,	1
	. ,				

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	43

		more negative/less positive	1		
	(iv)	the [Ag⁺(aq)] will decrease			
		$E_{\text{electrode}}$ becomes less positive or due to the common ion effect	1		
	(d)	$[Fe^{3+}(aq)] = 0.2 \text{ mol dm}^{-3}$	1		
		$[H^+] = \sqrt{(c.K_a)} = \sqrt{(0.2 \times 8.9 \times 10^{-4})} \text{ or } 1.33 \times 10^{-2} \text{ (mol dm}^{-3})$ pH = $-\log([H^+]) = 1.9 \text{ (or } 1.87 - 1.89)$	1		
		[Т	otal: 13]		
5	(a)	protons electrons neutrons	1		
		14C ²⁻ 6 8 8	1		
	(b)	CC l_4 : no reaction GeC l_4 and SnC l_4 : for each steamy fumes evolved <i>or</i> white solid produced GeC l_4 + 2H $_2$ O \longrightarrow GeO $_2$ + 4HC l SnC l_4 + 2H $_2$ O \rightarrow SnO $_2$ + 4HC l	1 1 1		
	(c)	Ge/Sn use d-orbitals or Ge/Sn have low lying d orbitals or carbon cannot expand its octet or carbon cannot accommodate more than 4 bonded pairs			
	(d)	$Sn^{4+}/Sn^{2+} = +0.15V$ and $Pb^{4+}/Pb^{2+} = +1.69V$ and $Cl_2/Cl^- = +1.36V$			
		Sn^{2+} is oxidised by Cl_2 because its E° is less positive/more negative or Sn^{2+} is a good reducing agent due to its smaller E value than Cl_2 ora or Pb^{4+} is a stronger oxidising agent than Cl_2 so Pb^{2+} with Cl_2 reaction is not feasible or Sn^{4+} is a weaker oxidising agent than Cl_2 so Sn^{2+} with Cl_2 reaction is feasible			
		$SnCl_2 + Cl_2 \longrightarrow SnCl_4$ or $Sn^{2+} + Cl_2 \longrightarrow Sn^{4+} + 2Cl^-$ or $SnCl_2 + Cl_2 + 2H_2O \longrightarrow SnO_2 + 4HCl$			
	(e) (i)	F = Le	1		
	(ii)	moles of $O_2(g) = 130/24000 = 5.417 \times 10^{-3} \text{ mol}$	1		
		moles of electrons needed = $4 \times 5.417 \times 10^{-3}$ or 2.17×10^{-2} mol			
		no. of coulombs passed = 1.2 x 30 x 60 <i>or</i> 2160 C	1		
		no. of electrons passed = $2160/1.6 \times 10^{-19}$ or 1.35×10^{22}	1		
		no. of electrons per mole = $1.35 \times 10^{22}/2.17 \times 10^{-2} = 6.2 \times 10^{23} \text{ (mol}^{-1})$	1		
		I	Total: 15]		

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	43

6	(a) (i)	CH₃COC <i>l</i> or ethanoyl chloride	1	
	(ii)	electrophilic substitution	1	
	(iii)	conc HNO ₃ and conc H ₂ SO ₄	1	
	(iv)	CHI ₃		
		O_2N O_2N O_2N O_2N O_2N O_2N O_2N O_2N O_2N	1	
	(b) (i)		1	
	(ii)	polyamide <i>or</i> condensation	1	
	(iii)	H ₂ O/water	1	
	(iv)	Sn/Fe + HCl + conc/aq/heat/warm	1	
	(v)	harder or more dense or stronger or higher m.pt or tougher or more rigid due to cross-linking or more H-bonding between the chains	1	
		["	Total: 10]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	43

7	(a) (i)	heat with catalyst or heat with	Al ₂ O ₃ /SiO ₂	1
	(ii)	B is CH ₃ CH ₂ CH ₃		1
	(iii)	C is CH ₂ =CHCH ₂ CH ₂ CH ₃		1
		D and E are CH ₃ CH=CHCH ₂ C	CH ₃ (one shown as cis, the other as trans)	1
		F is CH ₃ CH ₂ CH ₂ CO ₂ H		1
		G is CH ₃ CO ₂ H		
		H is CH ₃ CH ₂ CO ₂ H		
	(iv)	geometrical <i>or</i> cis-trans <i>or E-</i> 2	Z	1
	(b) (i)	No particular conditions <i>or</i> in t	the dark	1
	(ii)	electrophilic addition		1
	(iii)	CH ₃	CH₃ CH₃	
		CH 7 CH ₂	+ СН—СҢ ₂ _ СН—СҢ ₂	
		√ → δ+ Br	Br Br Br	
			Br -	1
		δ- I _{Br} μ		1
				tal: 10]
8	(a) (i)	condensation		1
	(ii)		ОН	
		$ m H_2N$	N OH	
				2
		,		
	(iii)	any two side-chain interaction	ns mentioned with group	
		Ionic attractions / bonds	between –CO2 ⁻ and –NH3 ⁺	
		van der Waals	between alkyl / aryl / non-polar groups <i>or</i> valine	2
		hydrogen(H) bonding	between –OH, –NH ₂ , COOH, –NH <i>or</i> serine	
		–S–S– <i>or</i> disulfide bonds <i>or</i> disulfur bond / bridge	between –SH groups or cysteine	
				ĺ

Page 7	Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9701	43

(b) (i)	labelled diagrams	
	enzyme substrate or substrate shape is complementary to active site the enzyme has a specific shape or substrate shape is complementary to active site the substrate bonds/binds/fits to the active site or other substrates do not fit	1
	into active site	
(ii)	labelled diagrams active site substrate o longer fits active site substrate or in words	
	 inhibitor binds to enzyme away from the active site or inhibitor binds to 	1
	 allosteric site this changes the shape (or structure) of the active site substrate no longer fits the active site 	1
	[Tot	tal: 10]
9 (a) (i)	use restriction enzymes or using an enzyme to break (the DNA) down into smaller fragments	1
(ii)	use the polymerase chain reaction or use DNA polymerase to replicate/copy (the sample of DNA)	1
(iii)	 amino acids have different charges due to their side-chain/R group/pH/CO₂⁻ and NH₃⁺ groups DNA fragments have negatively-charge phosphates(or PO₄) or DNA has PO₄³⁻ groups 	1

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	43

					_
		(iv)	A piece of leather from an Egyptian tomb		1
			A sample of skin from a mummified body		
			A fragment of ancient pottery	X	
			A piece of wood from a Roman chariot		
	(b)	(i)	the electron density in the molecule or positions of atoms or interatomic distance/spacing between the atoms		1
		(ii)	phosphorus has the most electrons or phosphorus has the highest electron density		1
	(c)	(i)	equilibrium constant (for the solution) of a solute between two (immiscil solvents	ble)	1
			or ratio of the concentration of the solute in (each of the) two solvents		
			or ratio of the solubility of the solute in (each of the) two solvents		
		(ii)	$\frac{x/(25/1000)}{(0.0042-x)/(25/1000)}$ $x = 0.0252 - 6x$		1
			x = 0.0232 - 6x x = 0.0036g		1
			-		•
				[To	tal: 10]
10	(a)	(i)	any three of the following structures $CH_3CH_2CH_3$ $CH_3CH=CH_2$ $CH_3C=CH$ $CH_2=C=CH_2$ H_2	[To	_
10	(a)	(i) (ii)	$CH_3CH_2CH_3$ $CH_3CH=CH_2$ $CH_3C\equiv CH$ $CH_2=C=CH_2$ H_2 C C C C C C C C		tal: 10]
10		(ii)	CH ₃ CH ₂ CH ₃ CH ₃ CH=CH ₂ CH ₃ C=CH CH ₂ =C=CH ₂ H ₂ K since it has the greatest % of hydrocarbons/carbon-containing compo		tal: 10]
10		(ii)	CH ₃ CH ₂ CH ₃ CH ₃ CH=CH ₂ CH ₃ C≡CH CH ₂ =C=CH ₂ K since it has the greatest % of hydrocarbons/carbon-containing compoor 99.6 % of it is burnt for energy any two from • reacted with lime/CaO/soda lime/Ca(OH) ₂ /KOH/NaOH/ • liquefied under pressure/≥5 atm		tal: 10]
10		(ii) (iii)	CH ₃ CH ₂ CH ₃ CH ₃ C≡CH CH ₂ =C=CH ₂ K since it has the greatest % of hydrocarbons/carbon-containing compoor 99.6 % of it is burnt for energy any two from • reacted with lime/CaO/soda lime/Ca(OH) ₂ /KOH/NaOH/ • liquefied under pressure/≥5 atm • dissolved in water under pressure/≥5 atm have a shorter carbon/hydrocarbon chain or shorter hydrocarbon or fewer carbon atoms in its chain		tal: 10] 2

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	43

	produces the largest amount of SO ₂ or largest combined amount of SO ₂ and NO ₂	
(iii)	they burn at higher temperatures or release more heat on burning	1
(iv)	CO – the gas is toxic/poisonous <i>or</i> references to Hb and ability to carry oxygen	1
	CO ₂ – the gas contributes to global warming	1
	[Total: 1	