MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/21
Paper 2 (Structured Questions AS Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9701	21

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9701	21

Question	Mark Scheme	Mark	Total
(ii)	NaCl giant/lattice AND ionic SiCl_{4} simple/molecular AND covalent For NaCl large difference in electronegativity (of sodium $/ \mathrm{Na}$ and chlorine $/ \mathrm{Cl} / \mathrm{Cl}_{2}$) (indicates electron transfer/ions) For SiCl_{4} smaller difference (indicates sharing/covalency) with (weak) van der Waals'/ IM forces (between molecules) ora	[1] [1] [1] [1]	[4]
			[20]
2 (a) (i)	Straight line drawn horizontally from same intercept	[1]	[1]
(ii)	T_{1} because it shows greatest deviation/furthest from ideal	[1]	[1]
(iii)	reducing T (reduces KE of particles) so intermolecular forces of attraction become more significant	[1]	[1]
(iv)	greatest deviation is at high pressure increasing pressure decreases volume so volume of particles becomes more significant ora	[1] [1]	[2]
(b)	$\begin{array}{lll} \text { Mass of air } & =100 \times 0.00118 & =0.118 \mathrm{~g} \\ \text { Mass of flask } & =47.930-0.118 & =47.812 \mathrm{~g} \\ \text { Mass of } \mathbf{Y} & =47.989-47.812 & =0.177 \mathrm{~g} \end{array}$ $\begin{aligned} p V=n R T & =\frac{m}{M_{r}} R T \\ M_{r}=\frac{m R T}{p V} & =\frac{0.177 \times 8.31 \times 299}{1 \times 10^{5} \times 100 \times 10^{-6}} \\ & =44.0 \text { (} 43.979 \text { to } 2 \text { or more sf) } \end{aligned}$	[1] [1] [1] [1]	[4]
(c) (i)	strong triple bond	[1]	[1]
(ii)	high temperature (needed for reaction between N_{2} and O_{2})	[1]	[1]
(iii)	$\begin{aligned} & 2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{~N}_{2}+2 \mathrm{CO}_{2} \\ & \mathrm{OR} 2 \mathrm{NO}+\mathrm{C} \rightarrow \mathrm{~N}_{2}+\mathrm{CO}_{2} \end{aligned}$	[1]	[1]
(iv)	$4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4 \mathrm{HNO}_{3}$	[1]	[1]
(v)	$\begin{aligned} & \mathrm{NO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2} \\ & \mathrm{NO}_{2}+\mathrm{SO}_{2} \rightarrow \mathrm{NO}+\mathrm{SO}_{3} \\ & \mathrm{OR} \mathrm{NO}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$	[1] [1]	[2]
			[15]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9701	21

Question	Mark Scheme	Mark	Total
3 (a)	Bond breaking $=$ $\mathrm{C}=\mathrm{O}=740$ $\mathrm{C}-\mathrm{H}=410$ Bond forming $=1150 \mathrm{~kJ}$ $\mathrm{C}-\mathrm{C}=350$ $\mathrm{C}-\mathrm{O}=360$ Enthalpy change $=$ $1150-1170=\mathbf{O}=\mathbf{2 0} \mathrm{kJ} \mathrm{mol}^{-1}$	[1] [1] [1]	[3]
(b) (i)	Stereoisomerism =(molecules with the same molecular formula and $)$ same structural formula but different spatial arrangements of atomsChiral centre = atom with four different atoms/groups attached	[1] [1]	[2]
(ii)	(Planar) carbonyl so (equal chance of nucleophile) attacking either side	[1]	[1]
3 (c) (i)	M1 = lone pair AND curly arrow from lone pair to carbonyl C $\mathrm{M} 2=$ partial charges on $\mathrm{C}=\mathrm{O}$ AND curly arrow from bond (=) to $\mathrm{O}^{\delta-}$ M3 = structure of intermediate including charge M4 = lone pair AND two correct curly arrows (from lone pair to H AND from $\mathrm{H}-\mathrm{C} \text { to } \mathrm{C})$ $\mathrm{M} 5=\mathrm{CN}^{-}$	[1] [1] [1] [1] [1]	[5]
(ii)	(CN^{-}regenerated so) catalyst	[1]	[1]
			[12]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9701	21

Question	Mark Scheme	Mark	Total
4 (a)	OR	[1] [1] [1] [1] [1] [1] [1]	[7]
(b) (i)	but-1-ene/1-butene but-2-ene/2-butene	$\begin{gathered} {[1]} \\ {[1]} \end{gathered}$	[2]
(ii)	but-2-ene AND two different groups on each carbon (of $\mathrm{C}=\mathrm{C}$) double bond means no free rotation	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(iii)		[1+1]	[2]
			[13]

