CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Advanced Level

9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge International A Level – October/November 2014	9701	41

Question	Marking point	Marks	Marks total
1 (a) (i)	[NO] 2^{nd} order and the concentration is $\times 2$, rate $\times 4$	1	
	$[O_2]$ 1 st order and evidence of using expt 1 & 2 when the concentration is ×2, rate doubles	1	
(ii)	(0.00408×27) rate = <u>0.11</u> (mol dm ⁻³ s ⁻¹) to 2sf	1	
(iii)	(Rate =) $k [O_2][NO]^2$		
(iv)	k = 332(.03125) mol ⁻² dm ⁶ s ⁻¹		
(b) (i)	labelled axes <i>x</i> -axis: energy (KE) and <i>y</i> -axis: molecules or particles two curves: starts origin; not touching <i>x</i> -axis again; no levelling out; curves only intersecting once curves labelled and T2 is to the right and lower max than T1		
(ii)	rate increases and energy of the particles increases	1	
	more particles have E_a		
(c)	1 mole of F_2 and 1 mole NO reacting in the slow step	1	
	a balanced mechanism consistent with overall equation		
	e.g. $F_2 + NO \rightarrow NOF + F$ OR $F_2 + NO \rightarrow NOF_2$ NO + F \rightarrow NOF NOF NOF NOF NOF NOF NOF		[2]
Total			[13]

Page 3	Mark Scheme S		Paper
	Cambridge International A Level – October/November 2014	9701	41

2	(a)	3d4s	1	
		(Ni) $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ \uparrow \uparrow $\uparrow \downarrow$	1	[2]
		$(Ni^{2*}) \qquad \uparrow \downarrow \qquad \uparrow \downarrow \qquad \uparrow \downarrow \qquad \uparrow \qquad \uparrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad$		
	(b) (i)	degenerate	1	
	(ii)	2 upper orbitals and 3 lower orbitals	1	
	(iii)	correct upper orbital diagram	1	
		correct lower orbital diagram	1	[4]
	(c)	electron(s) move from lower to upper level	1	
		absorb (red/blue) light/photon	1	
		complementary colour (green) is seen OR green light is transmitted	1	[3]

	Page 4	Mark Scheme	Syllabus	Paper		
		Cambridge International A Level – October/November 2014	9701	41]	
(d)	A Ni(OF B [Ni(N	$(H_2)_2$ OR Ni(OH) ₂ (H ₂ O) ₄ $(H_3)_6]^{2+}$ OR $[Ni(NH_3)_n(H_2O)_{6-n}]^{2+}$ OR $[Ni(NH_3)_n(H_2O)_{4-n}]^{2+}$			1 1	
	Ni ²⁺ + 2 OR [Ni(H OR [Ni(H OR [Ni(H	$\begin{array}{rcl} OH^{-} \rightarrow & \text{Ni}(OH)_{2} \\ _{2}O)_{6}]^{2^{+}} &+ & 2OH^{-} \rightarrow & \text{Ni}(OH)_{2} &+ & 6H_{2}O \\ H_{2}O)_{6}]^{2^{+}} &+ & 2NH_{3} \rightarrow & \text{Ni}(OH)_{2} &+ & 4H_{2}O &+ & 2NH_{4}^{+} \\ _{2}O)_{6}]^{2^{+}} &+ & 2OH^{-} \rightarrow & \text{Ni}(OH)_{2}(H_{2}O)_{4} &+ & 2H_{2}O \end{array}$			1	
	Ni(OH) ₂ - OR Ni(H ₂	+ 6NH ₃ → [Ni(NH ₃) ₆] ²⁺⁻ + 2OH ⁻ $(O)_6$] ²⁺ + 6NH ₃ → [Ni(NH ₃) ₆] ²⁺⁻ + 6H ₂ O			1	[4]
Total						[13]

	Page 5	Mark Scheme	Syllabus	Paper	7	
		Cambridge International A Level – October/November 2014	9701	41		
(a) (i)	$101 = P^{35}$ $103 = P^{35}$ $105 = P^{37}$	Ct ³⁵ C1 Ct ³⁷ C1 Ct ³⁷ C1			1 1 1	
(ii)	9:6:1				1	[4]
(b) (i)	PCl ₅ 5 bc	onding pairs around P			1	
(ii)					1 1	[3]
(c) (i)	PO PO PO PO P_4O ₆ struc	P o ture where each P has three P-O bonds and each O has two P-O bo	onds e.g.		1	

3

	0=P-0-P 0		
(ii)	(molecule/ion/species) that donates a lone pair of electrons (to a central transition metal atom or ion)	1	[2]
(d) (i)	$K_{\rm sp} = [Ca^{2+}]^3 [PO_4^{3-}]^2$	1	

	Page 6	Mark Scheme	Syllabus	Paper		
		Cambridge International A Level – October/November 2014	9701	41		
	-					
(ii)	[Ca ²⁺] = [PO ₄ ^{3–}] =	$3 \times 2.50 \times 10^{-6} = 7.50 \times 10^{-6} \text{ mol dm}^{-3}$ = $2 \times 2.50 \times 10^{-6} = 5.00 \times 10^{-6} \text{ mol dm}^{-3}$			1	
	= (7.50 ×	$10^{-6})^{3}(5.00 \times 10^{-6})^{2}$				
	= 1.05(1. mol ⁵ dm ⁻¹	1) × 10 ⁻²⁶			1	[4]
(e) (i)	(enthalpy is forme	r change) when 1 mole of an ionic compound I from its gaseous ions			1 1	
(ii)	Mg ²⁺ has OR Mg ²⁺	a smaller (ionic) radii than Ca ²⁺ is smaller than Ca ²⁺			1	[3]
Total						[16]
4 (a) (i)	2H ₂ SO ₄ + OR H ₂ SC	$ HNO_3 \rightarrow 2HSO_4^- + NO_2^+ + H_3O^+ $ $ O_4 + HNO_3 \rightarrow HSO_4^- + NO_2^+ + H_2O $			1	

	Page 7	Mark Scheme	Syllabus	Paper		
		Cambridge International A Level – October/November 2014	9701	41		
(ii)	any three • cu • int • cu • pr allow 2- a	e of inly arrow from inside the benzene ring to NO_2^+ group termediate – penalise NO_2 connectivity or missing methyl group (once inly arrow from C-H bond into ring oduct + H ⁺ (or as diagram –H ⁺) and 3-substituted nitromethylbenzene) $\downarrow -H^+$ $H^ NO_2^+$	e)		3	[4]
(b) (i)	acidity of	$C_1CH_2CO_2H > CH_3CO_2H$ AND ($C_1CH_2CO_2H$) as an electronegative/el	ectron with	drawing	1	
(ii)	acidity of OR benze	phenol > CH_3CH_2OH AND electrons on oxygen (on phenol) delocalisene ring withdraws electrons from oxygen	sed into ring		1	
	stronger a	acid linked to weakening O-H bond/anion being stabilised			1	[3]

Page 8	8 Mark Scheme		Paper
	Cambridge International A Level – October/November 2014	9701	41

(c)	Na		redox/reduction		
		(or ionic)			
	Br ₂	Br O OH	(electrophilic) substitution		
	NaOH	Br O			
		OH and OH [1]	hydrolysis/ acid-base/		
		or ionic ONa ONa			
	1 mark for	r each correct structure on types, 2 correct = 1 mark, 3 correct = 2 r	narks	4 2	[6]

Page 9	Mark Scheme		Paper
	Cambridge International A Level – October/November 2014	9701	41

Total				13
5	(a)	$CH_{3}CH_{2}COCl > CH_{3}CH_{2}CH_{2}Cl > C_{6}H_{5}Cl$		
		 any two of: C-Cl bond strength is weakest in CH₃CH₂COCl ora In C₆H₅Cl (no hydrolysis) C-Cl bond is part of delocalised system OR p-orbital on Cl overlaps with π system OR electrons from Cl overlap with π system CH₃CH₂COCl carbon in C-Cl bond is more electron deficient since it is also attached to an oxygen atom ora 		[3]
	(b)	ketone, amine, carboxylic acid two correct 1 mark, all three 2	2	[2]
	(c) (i)	dipole on C-Br curly arrow breaking C-Br bond curly arrow from lone pair on N to carbon in C-Br bond H_{2N} H_{3C}	1 1 1	
	(ii)	nucleophilic substitution	1	
	(iii) HBr or hydrogen bromide		1	[5]

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9701	41

(d)	$\mathbf{Y} = \begin{array}{c} 0 \\ H_2 N \\ OH \end{array} OH$		
	$\mathbf{W} = \underbrace{\mathbf{W}_{3N}^{+}}_{(Cl^{-})} \underbrace{\mathbf{O}}_{OH} \qquad \mathbf{X} = \underbrace{\mathbf{W}_{3C}^{+}}_{H_{3C}^{+}} \underbrace{\mathbf{O}}_{OH} \qquad \mathbf{V} = \underbrace{\mathbf{W}_{3N}^{+}}_{O} \underbrace{\mathbf{O}}_{OH} \qquad \mathbf{V} = \underbrace{\mathbf{W}_{3N}^{+}}_{O} \underbrace{\mathbf{O}}_{OH} \qquad \mathbf{V} = \underbrace{\mathbf{W}_{3N}^{+}}_{O} \underbrace$		
	each structure 1 mark		
(e)	$\begin{array}{c c} & & & \\ & & \\ \hline \\ & \\ & \\ & \\ & \\ & \\ &$		
	correct polyamide with two repeat units	1 1	[2]
Total			15
6 (a)	 (move in different directions) some amino acids have a different charge (move at different speeds) some amino acids have a different size/different charge (some amino acids do not move at all) some amino acids exist as a zwitterions/have no net(overall) charge/neutral/both NH₂/COOH are charged in amino acids 	1 1 1	[3]
(b) (i)	mobile – solvent or water stationary – alumina/silica (supported on glass/plastic/Al)	1 1	
(ii)	by adsorption	1	[3]

	Page 11	Mark Scheme	Syllabus	Paper		
		Cambridge International A Level – October/November 2014	9701	41		
(c)	 (c) any three of: (all can be awarded from a clear, labelled diagram) (base pairing) A to T OR C to G H-bonds between bases two/double stranded/chains anti-parallel strands (general structure) sugar-phosphate backbone OR BASE-SUGAR-PHOSPHATE bonded 					
	in	a diagram			-	r.1
(d)	van der Waals' forces lost (in val) H-bonding gained (in ser)					[2]
Total						11
7 (a)	amide gro	pup circled OR indicated as diagram up circled OR indicated as diagram $H_{3}C \xrightarrow{O} CH_{3}$ $H_{3}C \xrightarrow{HN} CH_{3}$			1 1	[2]
(b)	lower dos OR impro OR reduc	es of the drug required ved activity of the drug ed side effects			1	[1]

		Page 12	Mark Scheme	Syllabus	Paper		
			Cambridge International A Level – October/November 2014	9701	41		
	(c) decreases enzyme activity OR decreases rate at which product is formed				1		
		binds with the enzyme's active site OR has a complementary shape to active site OR similar shape to substrate					
		(competitive inhibition can be overcome by) increasing [substrate] OR increasing substrate concentration					
	(d)	energy source/carrier OR releases energy when hydrolysed				1	[1]
Tota	otal						7
8	(a)	M:M+1 = 20.4/0.9 =	100/(1.1 x n) = 100/(1.1 x n)			1	
		x =4					
	(ii)	C ₄ H ₁₀ O					[3]
	(b) (i)	2-methylp	oropan-1-ol OR correct structure			1	
			H ₃ C OH				
	(ii)	0.9-1.0 multiplet/ singlet/2.9 3.4	is $(2 x)CH_3R/CH_3/RCH$ 1.8 is CHR/R ₃ CH 5 is OH is CH ₂ O/CH ₃ O			1 1 1 1	
	(iii)	doublet 1H/one p	roton on adjacent carbon			1 1	

	Page 13	Mark Scheme	Syllabus	Paper]	
		Cambridge International A Level – October/November 2014	9701	41]	
(iv)	OH peak	or one peak disappears			1	
	OH proto or as an	h is labile or exchanges for D of D ₂ O equation e.g. D ₂ O + OH \rightarrow DOH + OD as a minimum			1	[9]
Total						12
						100