MARK SCHEME for the May/June 2014 series

9701 CHEMISTRY

9701/52

Paper 5 (Planning, Analysis, and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9701	52

Question	Expected Answer	Mark	
1 (a)	Water can hydrogen bond with ammonia (ORA for trichloromethane) Water/oxygen/ammonia/nitrogen has a lone pair (of electrons) (ORA for trichloromethane) OR trichloromethane has dipole-dipole interactions only	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(b)	$\begin{array}{r} \left(K_{\text {partition }}=\right) \frac{\left[\mathrm{NH}_{3(\text { water })}\right]}{\left[\mathrm{NH}_{3 \text { (trichloromethane) }}\right]} \\ \text { AND }\left(K_{\text {partition }}\right)>1 \text { ORA } \end{array}$	[1]	[1]
(c)	It is not important as the concentration is independent of volume	[1]	[1]
(d)	$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	[1]	[1]
(e) (i)	Calculates the concentration of ammonia (in the aqueous layer) is (approximately) $1 \mathrm{~mol} \mathrm{dm}^{-3}$ OR between $0.96 \mathrm{~mol} \mathrm{dm}^{-3}$ and $1.04 \mathrm{moldm}^{-3}$ ecf from (d) Should be diluted by 5	[1] [1]	[2]
(e) (ii)	Pipette $50 \mathrm{~cm}^{3}$ of the $5.00 \mathrm{moldm}^{-3}$ aqueous ammonia into a $250 \mathrm{~cm}^{3}$ volumetric (graduated) flask ecf from (e)(i) other flask sizes and methods of accurate volume measurement allowed Make up to the mark with water. Shake OR invert the flask OR mix.	[1] [1]	[2]
(f)	Allow suitable methods for avoiding the inhalation of ammonia AND/OR trichloromethane fumes	[1]	[1]
(g)	methyl orange/screened methyl orange Allow other indicators with suitable pH range As it is weak base-strong acid titration	[1] [1]	[2]
(h)	The concentration/solubility in the aqueous layer is much larger so determination of its concentration would be less prone to error Allow sulfuric acid immiscible with trichloromethane layer	[1]	[1]
(i)	Calculates the moles of ammonia in the aqueous layer ecf from (d) Subtracts from the original to obtain moles in the trichloromethane	[1] [1]	[2]

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9701	52

2 (a)	2 marks awarded unless: (i) The curve is clearly not smooth or has a point of inflexion or is in the wrong position (ii) A point is clearly not in the correct position	[2]	[2]
(b)	Point at 120 s is the most anomalous Difficult to measure very small concentrations/ volume OR concentration/volume measured before the recorded time OR time recorded later than the measured concentration	[1] [1]	[2]
(c)	EITHER Draws appropriate construction lines Read two half-lives from graph as between 95 and 105s Because half-lives are equal, identifies the reaction as first order OR Draws tangents to the curve at the points Correctly calculates gradients of the two lines OR the ratio of gradients Because shallower gradient is half of the steeper gradient, the reaction is first order	[1] [1] [1] [1] [1] [1]	[3]
(d) (i)	Draws suitable tangent at $\mathrm{t}=0$ Calculates gradient correctly for any line drawn at $t=0$.	[1] [1]	[2]
(ii)	Calculates correctly a value for: $\mathrm{k}=\mathrm{ans}(\mathrm{d}(\mathbf{i})) /\left(27 \times 10^{8}\right)\left(4 \times 10^{11}\right)$ gives units as cm^{3} molecules ${ }^{-1} \mathrm{~s}^{-1}$	[1]	[2]
(e)	Gives initial rate (gradient) as ans($\mathbf{d}(\mathbf{i}) /\left(6.02 \times 10^{23}\right)$ Completes calculation correctly	[1] [1]	[2]
(f)	The ozone concentration should remain (nearly) constant during the experiment So that the rate depends only on the concentration of NO	[1] [1]	[2]

