CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9701 CHEMISTRY

9701/42

Paper 4 (Structured Questions), maximum raw mark 100

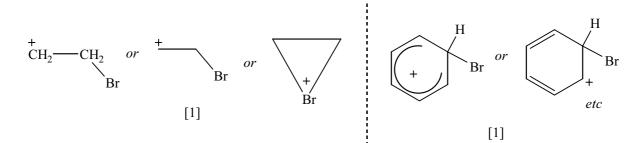
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

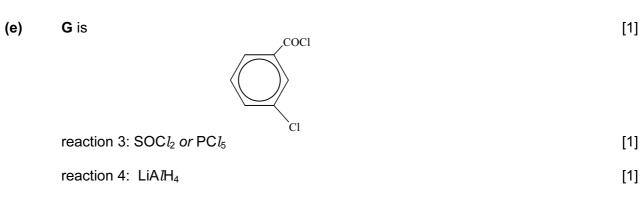
Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	42
1 (a) (i) 4s $4 \downarrow$ $4 \downarrow$ $4 \downarrow$ Fe	4s -	<u>↓</u> <u>↓</u> 3d	
			[2]
(ii)	(colour due to absorbance of visible light) due to electron promoted (from lower) to upper orbital/energ	y level	[1]
	in Zn ²⁺ there's no space in higher orbital for the electron to ga filled <u>d-</u> orbitals/shell	o <i>or</i> complete	ly [1]
			4
(b) (i)	yellow is due to [CuC4] ²⁻		[1]
	reaction is ligand displacement/exchange		[1]
(ii)	(solution goes blue) due to $[Cu(H_2O)_6]^{2+}$		[1]
	blue ppt. <i>or</i> (s) of Cu(OH) ₂ <i>or</i> [Cu(H ₂ O) ₄ (OH) ₂] etc.		[1] [1]
	purple <i>or</i> deep/dark blue solution <i>or</i> (aq) due to $[Cu(NH_3)_4]^{2+}$ <i>or</i> $[Cu(NH_3)_4(H_2O)_2]^{2+}$		[1]
			[1]
			7
(c) (i)	$2KI + K_2S_2O_8 \longrightarrow 2K_2SO_4 + I_2 \text{ or}$ ionic: $2I^- + S_2O_8^{2-} \longrightarrow 2SO_4^{2-} + I_2$		[1]
(ii)	Fe ²⁺ is a homogeneous catalyst		[1]
(iii)	equations: $2Fe^{2+} + S_2O_8^{2-} \longrightarrow 2Fe^{3+} + 2SO_4^{2-}$ $2Fe^{3+} + 2I^- \longrightarrow 2Fe^{2+} + I_2$		
	<i>or</i> verbal equivalent, e.g. reactants are both negative ions, other <i>or</i> Fe^{2+} can be oxidised by $S_2O_8^{2-}$ and Fe^{3+} can be redu		h [1]
			3
			[Total: 14]


	Page 3		\$	Mark Scheme GCE A LEVEL – May/June 2014	Syllabus 9701	Paper 42
2	(a)	A :	voltr	neter <i>or</i> V <i>or</i> potentiometer		[1]
		B:	plati	num <i>or</i> Pt		[1]
		C:	1 mc	$PIdm^{-3}$ and H^+ or HCl (or 0.5 M H_2SO_4)		[1]
		D:	lead	(metal) <i>or</i> Pb		[1]
						4
	(b)	(i)	a co e.g.	in the box next to -0.17 V mment that the [Pb ²⁺] has decreased plus a descripti as [Pb ²⁺] decreases (from 1 mol dm ⁻³), Pb ²⁺ (aq) + 2 to the left hand side, <i>or</i> as [Pb ²⁺] decreases, Pb ²⁺	e⁻	6
		(ii)		=) $[Pb^{2+}][Cl^{-}]^{2}$		[1]
		• •	if [Pl	DCl_2 = 3.5 × 10 ⁻² , [Pb ²⁺] = 3.5 × 10 ⁻² and [Cl ⁻] = 7.0 × R_{sp} = (3.5 × 10 ⁻²) × (7.0 × 10 ⁻²) ² = 1.715 (1.7) × 10⁻⁴ mo		[1] +[1]
						5
	(c)	(i)	the ($(M^{2+}/M) E^{e}$ for the two elements are very similar <i>or</i> are	–0.13 and –0.14 V	[1]
			<i>E</i> [⊕] (\$	Sn^{4+}/Sn^{2+}) = 0.15 V and E° (Pb ⁴⁺ /Pb ²⁺) = 1.69 V		[1]
				Sn ²⁺ is quite easily oxidised (to Sn ⁴⁺) or is a stronger reeasily oxidised (to Pb ⁴⁺) or Pb ⁴⁺ is a stronger oxidar liced		
		(ii)	•	$PbCl_2 + Zn \longrightarrow Pb + ZnCl_2$ (<i>or</i> ionic) er acceptable reductants: Fe, Mg, Ca but not Na or K)		[1]
				+ $Br_2 \longrightarrow Sn^{4+}$ + $2Br^{-}$ er acceptable oxidants: VO^{2+} , $Cr_2O_7^{2-}$, Ag^+ , Cl_2 , Br_2 , F_2	Eo^{3+} MpO ⁻)	[1]
			(Our	$\mathbf{C}_{2} = \mathbf{C}_{2} + \mathbf{C}_{2} $, 1 e , IVIIIO4)	5
	(d)	(i)	Pb ²⁺	$l(g) + 2Cl^{-}(g) \longrightarrow PbCl_{2}(s)$		[1]
		(ii)	–359 LE =	$= \Delta H_{at} + E(Cl - Cl) + 1^{st} IE + 2^{nd} IE + 2 \times E_A(Cl) + LE$ $= 195 + 242 + 716 + 1450 - 2 \times 349 + LE$ $= 2 \times 349 - 359 - 195 - 242 - 716 - 1450$		
				= −2264 (kJ mol ^{−1})		[3]
		(iii)		$PbCl_2$ > LE(PbBr_2) <i>or</i> more exothermic <i>or</i> stronger latt		[1]
			beca	ause C l^- /chloride anion has smaller radius/size than I	3r ⁻ /bromide	[1]
						6
						[Total: 20]

	Page 4			Mark Scheme	Syllabus	Paper
				GCE A LEVEL – May/June 2014	9701	42
3	(a)	(i)	B ar	nd D		[1] + [1]
		(ii)	D			[1]
						3
	(b)	hea	t with	dilute H⁺(aq) <i>or</i> H₂SO₄(aq)		[1]
		<i>(</i>)				1
	(c)	(i)		rger than that for ethanol because ethanoate ion/ $CH_3CO_2^-$ is stabilised by charge deloca	lisation	
		the O–H bond is weakened due to its proximity to C=O/carbonyl group <i>or</i> the second electronegative/oxygen atom				
	<i>K</i> _a smaller than that for chloroethanoic acid because electron-withdrawing/electronegative chlorine (atom) makes the anion more stable <i>or</i> O–H bond weaker <i>or</i> H more easily lost					
		(ii)	[H⁺]	= $\sqrt{([CH_3CO_2H] \times K_a)} = \sqrt{(0.1 \times 1.75 \times 10^{-5})} = 1.32(3)$	× 10 ⁻³ (mol dm ⁻³)	[1]
			pH =	= -log ₁₀ [H ⁺] = 2.88 (2.9)		[1]
						4
	(d)	(i)		aOH) at start = 0.1 × 20/1000 = 2.0 × 10 ⁻³ mol aOH) at finish = 1.0 × 10⁻³ mol		[1]
		(ii)		is in 30 cm ³ of solution, NaOH] at finish = 1.0 × 10 ⁻³ /0.030 = 3.3(3) × 10⁻² mo (i)	ldm ⁻³ (≥2 s.f.) e	cf [1]
		(iii)		= $K_w/[OH^-]$ = 1 × 10 ⁻¹⁴ /3.33 × 10 ⁻² = 3.0 × 10 ⁻¹³ m = $-\log_{10}[H^+]$ = 12.5(2)	ol dm ⁻³	[1]
	or pOH = $-\log_{10}(3.33 \times 10^{-2}) = 1.48$ pH = pK _w - pOH = 14 - 1.48 = 12.5(2)					[1]
		(iv)	pH/	vol curve: start at pH 2.88 (2.9) ecf		[1]
			verti	cal (over at least 2 pH units) portion at V = 10 cm^3		[1]
			leve	is off at pH 12.5 \pm 0.3 ecf		[1]
		(v)	indic	ator is thymolphthalein		[1]
						7

[Total: 15]


	Page 5		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – May/June 2014	9701	42
4.	(a) (i)	addition AND			
	(ii)	substitution			[1]
					1
	(b) Br ₂	+ AlBr3	\longrightarrow Br ⁺ + AlBr ₄ ⁻ (or can use AlCl ₃ or FeCl	J_3 or FeBr ₃ etc.)	[1]
					1

(c) (i) The two intermediate cations:

(ii) The ring (of π electrons) in benzene is a stable configuration *or* is unchanged after the reaction. [1]

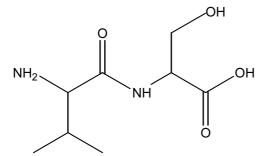
(d)	E is benzoic acid	[1]
	reaction 1: heat with KMnO ₄ (+ OH ⁻ or H ⁺)	[1]
	reaction 2: heat with $Cl_2 + AlCl_3$ or $FeCl_3$	[1]

3

3

3

[Total: 11]


	Page 6		6	N	lark Scheme	Syllabus	Paper
				GCE A LE	VEL – May/June 2014	9701	42
5.	(a)	(i)	Na r	eacts with –OH <i>or</i> hy	droxyl/alcohol groups		[1]
		(ii)	Fehl	ling's solution reacts v	with –CHO <i>or</i> aldehyde groups	3	[1]
							2
	(b)	mine	[1]				
							1
	(c)		(CH₃CH₂CH(OH)CHO	CH ₃ CH(OH)CH ₂ CHO	HOCH ₂ C	CH ₂ CH ₂ CHO
				OH	`	<u>^</u>	<u>^</u>
				Сно	СНО	НО	СНО
					ОН		[1] + [1] + [1]
							3
	(d)	(i)		CH₃CH(OH) group <i>oi</i> nyl ketone	r the CH₃CO group <i>or</i> methyl	secondary alcoho	
			meu	Iyi kelone			[1]
		(ii)	CH ₃	CH(OH)CH ₂ CHO			[1]
							2
	(e)	(i)	optic	cal isomerism			[1]
		(ii)					
			H	СНО	но нн сно		
							[1]
							2

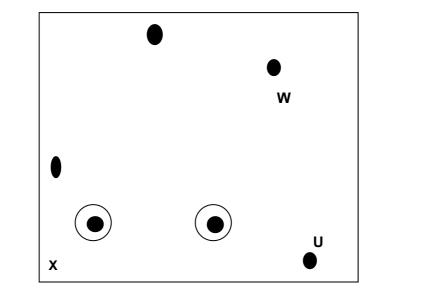
[Total: 10]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	42

Section B

6. (a) (i)

	Peptide bond correct Rest of structure correct (skeletal, displayed or structural formula, or a mix)	[1]
(ii)	Condensation or nucleophilic substitution or addition-elimination	[1]
(iii)	Water/H ₂ O	[1]
		4


DNA	RNA
Contains deoxyribose	Contains ribose
Contains thymine/T	Contains uracil/U
Double strand/chain/helix <i>or</i> two strands	Single strand/chain

(c)	(i) (met) - leu - thr - pro - glu	[1]
(ii)	Mutations <i>or</i> addition/insertion/deletion/substitution/replacement (of base)	a [1]
(iii)	Changing A (<i>or</i> the 14th base) into U	[1]
		3
		[Total: 10]

[3]

3

	Pa	ge 8	3	Mark Scheme	Syllabus	Paper
				GCE A LEVEL – May/June 2014	9701	42
7	(a)	(i)	(Eleo	ctrophoresis): the size/shape/ M_r of the amino acid or	its charge	[1]
	(ii) (Paper chromatography): the partition of the amino acid between, or the relative solubility of the compound in, the 2 phases or solvent/water and					
	stationary phase / filter paper.				[1]	
						2
	(b)		Use	ninhydrin as a locating agent		[1]
					1	
	(c) The R _f value or retardation/retention factor <i>or</i> the distance travelled by the acid compared to that travelled by a standard sample of the amino acid					the [1]
						1
	(d) R – glutamic a		R – 9	glutamic acid; S – glycine; T – lysine		3 × [1]
						3

(e)

3 × [1]

[Total: 10]

	Page 9		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – May/June 2014	9701	42
8.	(a) (i)		addition polymer (e.g. polyethene, polypropene, E, PVA, <i>Teflon</i>)	polystyrene, PVC	, [1]
	(ii)		condensation polymer (e.g. polyamide, polyester, nyl <i>Kevlar</i> , <i>Nomex</i>)	on, <i>Terylene</i> , PET	, [1]
					2
	(b)	Hydro	olysis or nucleophilic substitution		[1]
		Ester	and amide/peptide or -CO ₂ - and -CONH-		[1]
	(-)				2
	(c)		Г	. 1	
		CH ₃	or or	O CH ₃	
		Corre	ect ester linkage		[1]
		CH₃ s	side chain on only one monomer unit		[1]
					2
	(d)	Plant C=C	materials do not generally contain unsaturated hydr	ocarbons/alkenes	
		0-0			[1]
					1
	(e) (i)	Y var	n der Waals' forces		[1]
		Z hyd	lrogen bonding		[1]
	(ii)		cause it can form hydrogen bonds with water <i>or</i> it NH groups	contains polar CC) [1]
					3
					[Total: 10]