CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

9701 CHEMISTRY

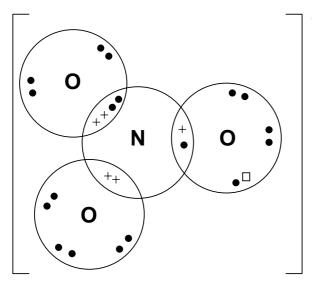
9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

www.tirenepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.


Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

1 (a)

dative bond to an oxygen using two N electrons	[1]
8 electrons around N in 1 double + 2 single bonds	[1]
a total of 24 electrons, including one, and <i>only</i> one " "	[1]
(the extra electron, " ", can be in a bond or a lone pair)	

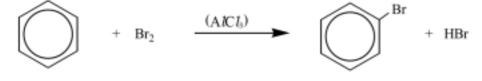
[3]

(b) (i) $2Mg(NO_3)_2 \longrightarrow 2MgO + 4NO_2 + O_2$ [1]

(down the group) nitrates become more stable <i>or</i> are more difficult to decompose <i>or</i> need a higher temperature to decompose	[1]
because there is less polarisation of the anion/nitrate ion/N–O bonds	[1]
as radius of M^{2+} /metal ion increases <i>or</i> charge density of the cation decreases	[1]
	[4]
	nitrates become more stable <i>or</i> are more difficult to decompose <i>or</i> need a higher temperature to decompose because there is less polarisation of the anion/nitrate ion/N–O bonds

(c)
$$Cu + 4H^+ + 2NO_3^- \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O$$

species [1] balancing [1]


[2]

[Total: 9]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43
? (a) any two	o from: molecules have negligible volume negligible intermolecular forces or particles are or to the walls of the container random motion		
	no loss of kinetic energy during collisions <i>or</i> ela elastic molecules)	istic collisions (N	2 × [1] [2]
(b) (i) lov	r temperature and high pressure	bo	oth required [1]
(ii) (at	low T) forces between particles are more important,		[1]
(at	high P) volume of molecules are significant		[1]
			[3 max 2]

(c) (i) endothermic; because the equilibrium moves to the right on heating *or* with increasing temperature *or* because bonds are broken during the reaction [1]

(ii) e.g. halogenation or Friedel-Crafts alkylation/acylation

reactants [1] products [1]

other possibilities: Cl_2 , I_2 , R-Cl, RCOCl etc.

[3]

[Total: 7]

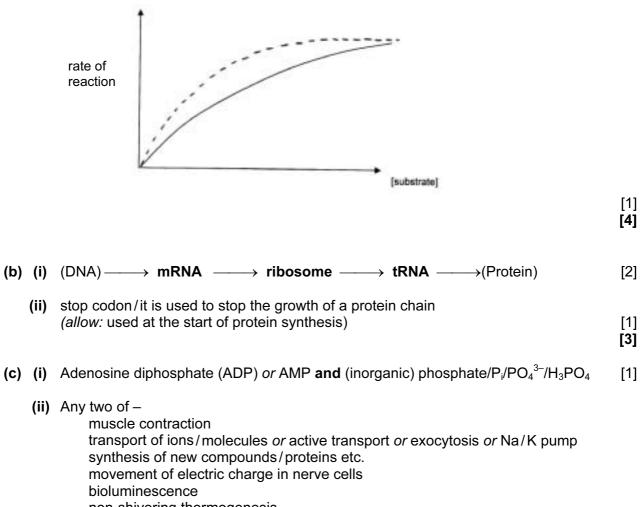
Page 4	N	lark Scheme		Syllabus	Paper
	GCE A LEVEL	ber 2013	9701 43		
3 (a) (i) CH	$_{3}Br(g) \longrightarrow CH_{3}(g)$	+ Br(g)			[1]
or	$AlCl_{3}(g) \longrightarrow {}^{1}/{}_{3}Al(g)$ $AlCl_{3}(g) \longrightarrow AlCl_{2}$ $Cl_{3}(g) \longrightarrow Al(g) + $	$l_2(g) + Cl(g)$	k)		[2]
Υ.			,		[3]
due	nd energies decrease t to increasing bond le	ength <i>or</i> increase in			[1] [1]
Whi	ch causes less effectiv	ve orbital overlap o	riess auraction in	or the shared p	pair [1]
	<i>er</i> because fluorine is self)	electronegative, (h	nence each F wa	nts to keep its	electrons
ort F)	because the bond leng	gth is so short there	e is repulsion bet	ween the lone	pairs (on
,	epulsion between the	nuclei (of F)			[1]
					[4 max 3]
(c) (i) for	chlorine:				
	= E(H – H) + E(C <i>l</i> – C	C(l) - 2E(H - C(l)) = 4 $= -$	436 + 242 – (2 × –184 kJ mol ^{–1}	431)	[2]
	iodine: = E(H – H) + E(I – I) -		436 + 151 – (2 × – 11 kJ mol ^{−1}	299)	[1]
· · · ·	drides become less the		•		[1]
ast	the H–X bond energy	decreases (more th	an does the X–X	(bond energy)) [1]
					[5]
(d) (i)	Na 15.2 / 23	O 31.8 / 16	Br 53.0 / 79.9		[1]
	⇒ 0.661	1.99	0.663		
÷	- 0.661⇒ 1.0	3.0	1.0	thus NaB	rO ₃ [1]
	r₂ + 6NaOH ——→Na		l₂O		
	r₂ + 6NaOH ——→Na 8Br₂ + 6OH⁻ ——→Br		l₂O		species [1] balancing [1] [4]

	Page 5							/lark S	cheme	9		Syllab	us	P	aper	
					GC	EAL	EVEL	– Oct	ober/N	ovember 2	2013	970 ⁻	1		43	
4	(a)	(i)	Cart local			ıphite)	has	deloc	calised	electrons	whereas	s silicon's	s elec	ctrons	are	[1]
		(ii)								ed/mobile tructure	electrons	whereas	germ	anium	has	[1] [2]
	(b)	(i)	2Pb	O ₂		\rightarrow 2PI	oO + 0	O ₂								[1]
		(ii)	PbO) ₂ + .	4HCi	!	→ Pb	C <i>l</i> ₂ +	C <i>l</i> ₂ + 2	H ₂ O						[1]
		(iii)	SnO) + 2	NaO	н —	\rightarrow N	la₂Sn0	O ₂ + H ₂	0						[1]
		(iv)	GeC	;l ₄ +	2H ₂ (D ——	\rightarrow G	ieO ₂ +	4HC1							[1] [4]
														[Tota	al: 6]	

	Page 6	ô		Mark Sch		Syllabus	Paper
			GCE A LEV	EL – Octob	er/November 2013	9701	43
5	(a) (i)	Br ₂ (a electi 3Br	rophilic substituti	Br	$H\left(+3 \text{ HBr}\right)$		[1] [1]
							[1]
	(ii)	electi	pecial conditions rophilic addition	∽ ^{Br}			[1] [1]
		Br ₂	. → [Br	(allow bromohydrin or o if Br ₂ (aq) has been used		
							product [1]
	(iii)		UV <i>or</i> heat) radical substitut	tion			[1] [1]
		Br ₂	\rightarrow	$\int^{\mathrm{Br}} \left(+ \right)$	HBr)		
			nced equation in nced equation in				product [1] [1] [1]
						[1	1 max 10]
	(b) (i)				.OH CH ₃ CO ₂ H		
		С		D	Ε		
		•		_	3 correct structur	es (can be in an	y order) 3 × [1]
	(ii)	v v v	ts of tests: vith 2,4–DNPH: vith I₂ + OH [−] : vith NaOH: letters may be d	C and D D only D and E lifferent – m	ust refer to the candidate	's formulae)	[1] [1] [1] [6]
							[Total: 16]
							- •

	Page 7			Mark Scheme		Syllabus	Paper
			GCE A LE	VEL – October/Novemb	er 2013	9701	43
6	(a)	A (Brons	ted-Lowry) acid	is a proton donor.			[1] [1]
	(b)	H	H δ+ H δ+ h δ+ h δ+ h δ+ h δ+ h δ+ h δ+ h δ+ h	н Н О \$ ″	H H H H H H H H H H H H H H H H H H H	Н	
		lone a H-	e pair (on oxyge bond	lecule in the right orientation in H_2O or $-CO_2H$ or least once (at each end c	a on nitrogen)		[1]
		(ii) + H ₃ N-	CH ₂ CO ₂	_			[1] [5]
	(c)	allow eit	her $S_N 1$ or $S_N 2$ (or CO_2^-) CO_2H δ^+ CI δ^-	$\begin{array}{c} CO_2H \\ (+) \\ H_3N \\ H_3C \\ H \end{array} \right) \xrightarrow{(-)}{H} \\ H_3C \\ H \end{array} + \begin{array}{c} (-) \\ NH_3 \\ H_2N \\ H_2N \end{array}$	CO ₂ H CH ₃ ↓ -H ⁺ CO ₂ H CH ₃ CH ₃	+ CF	
		any thre	curly arrov curly arrov	shown in C–C <i>l</i> w from lone pair on NH ₃ w from C–C <i>l</i> bond to C <i>l</i> ate transition state or o	/ to (δ+) carbo		S _N 1, with [3] [3]
	(d)	lysine @ aspartic	9 pH 1: acid @ pH 12:	$^{+}NH_{3}(CH_{2})_{4}CH(NH_{3}^{+})CO_{2}CO_{2}CO_{2}CH_{2}CH(NH_{2})CO_{2}^{-}$			[1] [1] [2]

Pa	Page 8		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	43
(e)	(i)	6 (si	x)		[1]
	(ii)	eithe or	er H ₂ NCH(CH ₃)CO–NHCH(CH ₂ OH)CO ₂ H H ₂ NCH(CH ₂ OH)CO–NHCH(CH ₃)CO ₂ H		[2] [3]
(f)	(i)		pounds have the same structural formula but different (spatial) arrangement/position <i>or</i> orientation	of atoms in space	[1]
	(ii)	J			[1]
	(iii)	H ₂ N	H CH ₃		
		HO	OU		[1] [3]
					[Total: 17]


Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

Section B

7	(a)	(i)	Metals such as Hg, Ag, Cd, Pb, Cu (identified – NOT just "heavy metals")	
			(allow names, atomic symbols or ions, names or formulae of salts $- e.g. Pb(NO_3)_2$)	
			<i>or</i> penicillin <i>or</i> organophosphorus insecticide etc.	[1]

(ii)	The ion/inhibitor binds to a part of the enzyme molecule away from the active site or to an allosteric site This changes the shape of the active site or denatures the enzyme	[1] [1]
	OR	
	the inhibitor forms a covalent/permanent bond with the active site	[1]
	blocking entry of the substrate	[1]

(iii)

non-shivering thermogenesis **DNA** synthesis/reproduction

2 × [1] [**3**]

[Total: 10]

Page 1		0	Mark Scheme	Syllabus	Paper			
			GCE A LEVEL – October/November 2013	9701	43			
8	(a) NM	1R an	d radiowaves (<i>or</i> VHF/UHF <i>or</i> 40 – 800 MHz)		[1] [1]			
	(b) NMR: protons have (nuclear) spin or (spinning) proton produces magnetic moment/field or two spin states or protons can align with or against an applied magnetic field							
	there is insufficient electron density/cloud around H atoms for X-ray crystallogra							
	(c) Sul	lfur, b	ecause it has the highest electron density		[1] [1]			
	(d) (i)		$=\frac{100}{1.1} \times n$ $\frac{100 \times 0.15}{4.5 \times 1.1} = 3.03 = 3$	calculation must	t be shown) [1]			
	(ii)	the -	-OH peak (broad singlet) at δ 4.6		[1]			
	(iii)	3 (th	ree)		[1]			
	(iv)	Q has peak at 11.7δ . which is due to $-CO_2H$ (This can only be formed by oxidising a <i>primary</i> alcohol.)						
		or P	[1]					
			secondary alcohol with 3 carbons, two (methyl) gr nical environment (or wtte)	oups will be in	the same [1]			
			nalysis of the splitting pattern in P : the peaks at δ 0.9 ach must be adjacent to a –CH ₂ – group. (hence –CH ₂		ets, [1] [1]			
	(v)		CH ₂ CO ₂ H (structure needed, not name)		[1] [6]			
					[Total: 10]			

	Page 1			Mark Scheme			Syllabus	Paper			
				GCE A LEVEL – October/November 2013			9701	43			
9	(a)	(i)	diam	nond and graphite				[1]			
		(ii)	anv	three from							
		• •	-		graphite diamond						
			colo	ur trical conductivity			parent/colourles onductor	S			
				Iness	0		non slippery				
			density			more	e dense than graphite				
			melting point		diamond Iower	highe	r				
								3 × [1]			
								[4]			
		_									
	(b)	Because each carbon is only bonded to 3 others <i>or</i> is unsaturated/doubly-bonded/sp ² <i>or</i> has 3 bonding locations									
		(NOT forms only 3 <i>bonds</i>)									
		Coo	$\Sigma_{60}H_{60}$								
		000	00					[1] [2]			
	(c)	(i) Number of atoms carbon present = $0.001 \times 6.02 \times 10^{23} / 12 = 5.02 \times 10^{19}$				[1]					
		(ii) Number of hexagons present = $5.02 \times 10^{19} / 2 = 2.51 \times 10^{19}$									
		Area of sheet = 690 × 2.51 × 10 ¹⁹ = 1.73 × 10²² nm²									
	(iii) Graphene: Yes, since it has			ohene: Yes, since it ha	s free/delocalised/mobile electrons			[1]			
			Buckminsterfullerene: No, (although there is delocalisation within each sphe								
			it consists of separate/simple/discrete molecules/spheres/particles,								
	(so no delocalisation from one					۵		[1]			
		or electrons are trapped within each molecule/sphere									
								[Total: 10]			