CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	42

1 (a)

8 e⁻ around chlorine[1]1 H-electron (+) on the Cl^- ion[1]3 covalent (ox) and one dative (oo) around N[1]

[3]

(b) (i)	it would react (with H_2SO_4)	[1]
---------	----------------------------------	-----

(ii) $CaO + H_2O \longrightarrow Ca(OH)_2$ [1]

- (iii) CaO absorbs more water or CaO has greater affinity for water
 - [3]

[1]

(c)	(i)	$2Ca(NO_3)_2 \longrightarrow 2CaO + 4NO_2 + O_2$	[1]
	(ii)	(Down the group, the nitrates)	
		become more stable/stability increases	[1]
		because the size/radius of ion (\mathbf{M}^{2*}) increases	[1]
		thus causing less polarisation/distortion of the anion/NO ₃ ⁻ /N-O bond	[1]
			[4]

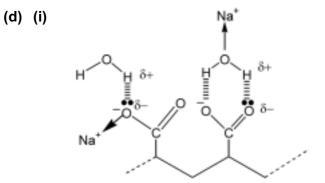
[Total: 10]

	Page 3		Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2013		9701	42
2	(a) (i)	Si-S	i bonds are weaker (than C-C bonds)		[1]
	(ii)	meta	allic (Sn) is weaker than (giant) covalent (Ge)		[1]
					[2]
	(b) (i)	or Si or Si	$\begin{array}{rcl} &+& 2H_2O & \longrightarrow & SiO_2 + 4HCl \\ &Cl_4 &+& 4H_2O & \longrightarrow & Si(OH)_4 + 4HCl \\ &Cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 4HCl \\ &Sial hydrolysis is not sufficient e.g. to SiCl_3OH + HCl) \end{array}$		[1]
	(ii)	PbC	$l_4 \longrightarrow PbCl_2 + Cl_2$		[1]
	(iii)	SnC	l_2 + 2FeC $l_3 \longrightarrow$ SnC l_4 + 2FeC l_2		[1]
	(iv)	or S	$_{2}$ + 2NaOH \longrightarrow Na ₂ SnO ₃ + H ₂ O nO ₂ + 2NaOH + 2H ₂ O \longrightarrow Na ₂ Sn(OH) ₆ nic equation SnO ₂ + 2OH ⁻ \longrightarrow SnO ₃ ²⁻ + H ₂ O		[1] [4]
					[Total: 6]

Page 4		Mark Scheme GCE A LEVEL – October/November 2013	Syllabus 9701	Paper 42	
(a) (i)		+ HZ \longrightarrow NH ₄ ⁺ + Z ⁻ DH + HZ \longrightarrow CH ₃ OH ₂ ⁺ + Z ⁻			[1] [1]
(ii)	Ū	+ B ⁻ \longrightarrow NH ₂ ⁻ + BH			[1]
(")	-	$DH + B^- \longrightarrow CH_3O^- + BH$			[1]
					[4]
(b) (i)	a rea	action that can go in either direction			[1]
(ii)		of forward = rate of backward reaction rward/back reactions occurring but concentrations of a	III species do no	t change	[1]
					[2]
(c) (i)	a sol	ution that resists changes in pH			[1]
	whei	n small quantities of acid or base/alkali are added			[1]
(ii)	in the	e equilibrium system HZ + $H_2O \Rightarrow Z^- + H_3O^+$			[1]
		ion of acid: reaction moves to the left combines with Z ⁻ <u>and</u> forms HZ			[1]
		tion of base: the reaction moves to the right combines with OH ⁻ and more Z ⁻ formed			[1]
				[5 ma	ıx 4]
(d) (i)	[H⁺]	= $\sqrt{(0.5 \times 1.34 \times 10^{-5})}$ = 2.59 × 10 ⁻³ (mol dm ⁻³)			[1]
	pH =	2.59/2.6 (min 1 d.p)		ecf	[1]
(ii)	CH ₃	$CH_2CO_2H + NaOH \longrightarrow CH_3CH_2CO_2Na + H_2O$			[1]
(iii)	n(ac	id) in 100 cm ³ = $0.5 \times 100/1000 = 0.05$ mol id) remaining = $0.05 - 0.03 = 0.02$ mol remaining] = 0.2 (mol dm ⁻³)			[1]
		vise, n(salt) = 0.03 mol + 0.3 (mol dm ⁻³)			[1]
(iv)	pH =	4.87 + log(0.3/0.2) = 5.04–5.05		ecf	[1]
					[6]
• •	-	CH ₂ COC <i>l</i>			
	SOC NaC	l_2 or PC l_5			[2]
		sponding Br compounds for G , H and J ; CH ₃ CH ₂ COBr			[-]

 (b) (i) (C-X bond energy) decreases/becomes weaker (from F to I) due to bond becoming longer/not such efficient orbital overlap (ii) (as the bond energy of C-X decreases) the halogenalkanes become more reactive (answer must imply that it is from F to I) (c) The C-C<i>I</i> bond is weaker than the C-F <u>and</u> C-H bonds or C-C<i>I</i> bond (E = 340) and C-H (E = 410) so is (easily) broken to form C<i>I</i>*/<i>CI</i> radicals/<i>CI</i> atoms causing the breakdown of O₃ into O₂ (d) C<i>I</i>-CH₂CH₂-CO₂H HO-CH₂CH₂-C<i>I</i> HO-CH₂CH₂-CO₂H HO-CH₂CH₂-C<i>I</i> HO-CH₂CH₂-C<i>I</i> HO-CH₂CH₂-C<i>I</i> 	[1] [1] [2] [1] [1] [1] [1] [1] [1] [1]
 (b) (i) (C-X bond energy) decreases/becomes weaker (from F to I) due to bond becoming longer/not such efficient orbital overlap (ii) (as the bond energy of C-X decreases) the halogenalkanes become more reactive (answer must imply that it is from F to I) (c) The C-C<i>l</i> bond is weaker than the C-F and C-H bonds or C-C<i>l</i> bond (E = 340) and C-H (E = 410) so is (easily) broken to form C<i>l</i>*/<i>Cl</i> radicals/<i>Cl</i> atoms causing the breakdown of O₃ into O₂ (d) C<i>l</i>-CH₂CH₂-CO₂H HO-CH₂CH₂-C<i>l</i> U (e) CH CH₂CH₂-CO₂H HO-CH₂CH₂-C<i>l</i> U (f) C<i>l</i>-CH₂CH₂-C<i>l</i> (f) C<i>l</i>-CH₂-CH₂-C<i>l</i> (f) C<i>l</i>-CH₂-C<i>l</i> (f) C<i>l</i>-CH₂-C<i>l</i> (f) C<i>l</i>-CH₂-C<i>l</i> (f) C<i>l</i>-CH₂-C<i>l</i> (f) C<i>l</i>-CH₂-C<i>l</i> (f) C<i>l</i>-CH₂-C<i>l</i><th> [1] [2] [1] [1] [3] [1] [1] [1] [1] </th>	 [1] [2] [1] [1] [3] [1] [1] [1] [1]
 (b) (i) (C-X bond energy) decreases/becomes weaker (from F to I) due to bond becoming longer/not such efficient orbital overlap (ii) (as the bond energy of C-X decreases) the halogenalkanes become more reactive (answer must imply that it is from F to I) (c) The C-C<i>I</i> bond is weaker than the C-F <u>and</u> C-H bonds or C-C<i>I</i> bond (E = 340) and C-H (E = 410) so is (easily) broken to form C<i>I</i>*/<i>CI</i> radicals/<i>CI</i> atoms causing the breakdown of O₃ into O₂ (d) C<i>I</i>-CH₂CH₂-CO₂H HO-CH₂CH₂-C<i>I</i> (a) C<i>I</i>-CH₂CH₂-CO₂H HO-CH₂CH₂-C<i>I</i> (b) C<i>I</i>-CH₂CH₂-C<i>I</i> (c) C<i>I</i>-CH₂CH₂-C<i>I</i> (c) C<i>I</i>-CH₂CH₂-C<i>I</i> 	 [1] [1] [1] [1] [1] [1]
due to bond becoming longer/not such efficient orbital overlap (ii) (as the bond energy of C-X decreases) the halogenalkanes become more reactive (answer must imply that it is from F to I) (c) The C-C <i>I</i> bond is weaker than the C-F <u>and</u> C-H bonds or C-C <i>I</i> bond (E = 340) and C-H (E = 410) so is (easily) broken to form C <i>I</i> */C <i>I</i> radicals/C <i>I</i> atoms causing the breakdown of O ₃ into O ₂ (d) C <i>I</i> -CH ₂ CH ₂ -CO ₂ H HO-CH ₂ CH ₂ -CO ₂ H	 [1] [1] [3] [1] [1] [1]
 (ii) (as the bond energy of C-X decreases) the halogenalkanes become more reactive (answer must imply that it is from F to I) (c) The C-C<i>l</i> bond is weaker than the C-F and C-H bonds or C-C<i>l</i> bond (E = 340) and C-H (E = 410) so is (easily) broken to form C<i>l</i>*/C<i>l</i> radicals/C<i>l</i> atoms causing the breakdown of O₃ into O₂ (d) C<i>l</i>-CH₂CH₂-CO₂H HO-CH₂CH₂-C<i>l</i>	[1] [3] [1] [1] [1]
(c) The C-C <i>l</i> bond is weaker than the C-F <u>and</u> C-H bonds or C-C <i>l</i> bond (E = 340) and C-H (E = 410) so is (easily) broken to form Cl^*/Cl radicals/C <i>l</i> atoms causing the breakdown of O ₃ into O ₂ (d) Cl -CH ₂ CH ₂ -CO ₂ H HO-CH ₂ CH ₂ -CO ₂ H HO-CH ₂ CH ₂ CH ₂ -C <i>l</i> \int_{Br}	[3] [1] [1] [1]
 (c) The C-C<i>l</i> bond is weaker than the C-F <u>and</u> C-H bonds or C-C<i>l</i> bond (E = 340) and C-H (E = 410) so is (easily) broken to form C<i>l</i>*/C<i>l</i> radicals/C<i>l</i> atoms causing the breakdown of O₃ into O₂ (d) C<i>l</i>-CH₂CH₂-CO₂H HO-CH₂CH₂-CO₂H HO-CH₂CH₂CH₂-C<i>l</i> (expected by the breakdown of O₃ into O₂ 	[1] [1] [1]
or C-C <i>l</i> bond (E = 340) and C-H (E = $4\overline{10}$) so is (easily) broken to form C <i>l</i> */C <i>l</i> radicals/C <i>l</i> atoms causing the breakdown of O ₃ into O ₂ (d) C <i>l</i> -CH ₂ CH ₂ -CO ₂ H HO-CH ₂ CH ₂ -CO ₂ H HO-CH ₂ CH ₂ -Cl \int_{Br} OH	[1] [1]
(d) $C_{l}CH_{2}CH_{2}-CO_{2}H$ HO-CH ₂ CH ₂ CH ₂ -C <i>l</i> i i i i	[1] [1]
(d) $C_{l}CH_{2}CH_{2}-CO_{2}H$ HO-CH ₂ CH ₂ CH ₂ -C <i>l</i> i i i i	[1]
(d) $Cl-CH_2CH_2-CO_2H$ HO-CH_2CH_2CH_2-Cl	[2]
HO-CH ₂ CH ₂ CH ₂ -C <i>l</i> OH Br	[3]
OH Br	[1]
Br	[1]
	[1]
	[3]
	[1]
(ii) (free) radical substitution	[1]
(iii) $\Delta H = E(C-H) - E(H-Cl) = 410 - 431 = -21 \text{ kJ mol}^{-1}$	[1]
(iv) $\Delta H = E(C-H) - E(H-I) = 410 - 299 = +111 \text{ kJ mol}^{-1}$ ecf	[1]
(v) The reaction with iodine is endothermic or ΔH is positive or requires energy	[1]
(vi) $Cl_2 \longrightarrow 2Cl^*$ $CH_3CH_2^* + Cl_2 \longrightarrow CH_3CH_2Cl + Cl^*$ $CH_3CH_2^* + Cl^* \longrightarrow CH_3CH_2Cl$	[1] [1] [1]
[Total:	[8]

	Page 6	;	Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	42
5	(a) (i)	man	y monomers form a polymer		[1]
	(ii)	addi	tion		[1]
	(iii)		/double/ π bond is broken and new C-C single bond <u>s</u> a puble bond breaks and forms single bonds with other r		[1]
					[3]
	(b) pro	penoi	c acid		[1]
					[1]


(c) (i)

carbon chain and CO_2H at least one sodium salt

(ii) 120° to 109(.5)° [1] due to the change from a trigonal/sp² carbon to a tetrahedral/sp³ carbon [1]

[4]

[1] [1]

Any four: hydrogen bond **labelled** water H-bonded to O through H atom δ +/ δ - shown on each end of a H-bond lone pair shown on O⁻ or C=O or H₂O on a **correct H-bond** Na⁺ shown as coordinated to a water molecule

(ii) Solution became paler and Cu⁽²⁺⁾ swapped with Na⁽⁺⁾
 or darker in colour and polymer absorbs water [1]

[4]

[3]

Page 7	,	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2013	9701	42
(e) (i)	alke	ne(1), amide(1)		[2]
(ii)	$\rm NH_3$			[1]
(iii)	H ₂ O			[1]
(iv)		(aq)/H₃O [⁺] and heat/reflux (not warm) H⁻ (aq), heat and acidify		[1]
	0, 0			[5]
				[Total: 17]

	Page 8	;	Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	42
			Section B		
6	(a) (i)	six/6	3 (gsv, sgv, gvs, vgs, svg,vsg)		[1]
	(ii)	н	NH O	он	
		H2			
			displayed peptide bonds ect formula of peptide		[1] [1]
	(iii)	valin	e (allow glycine)		[1]
	(iv)	hydr	<i>two of:</i> ogen bonds and CO ₂ H <i>or</i> OH <i>or</i> NH ₂ <i>or</i> CONH <i>or</i> CO bonds and NH ₃ ⁺ <i>or</i> CO ₂ ⁻	or NH or CO_2^-	
			der Waals' and $-CH_3 \text{ or } -H$		2 × [1]
					[6]
	(b) (i)	sam	e shape/structure as substrate		[1]
			bitor) competes/blocks/binds/bonds to active site ubstrate cannot bind to active site		[1]
	(ii)	bind	s with enzyme and changes shape/3D structure (of er	zvme/active site)	[1]
	(iii)			j ,	[.]
	()	Bate of reaction ->			

[1]

[4]

[Total: 10]

Substrate Concentration -

Da	ige 9	Mark Scheme	Syllabus	Paper	
Гđ	ige s	GCE A LEVEL – October/November 2013	9701	42	
(a)	elect	d.c. power supply glass slides rolyte amino acid mixture placed here filter paper soaked in buffer solution	611		
	ele gel	ver supply (idea of complete circuit) ctrolyte/buffer solution 'filter paper/absorbent paper nino acid) sample/mixture [centre of plate]		4	× [1
					[4
	size cha tem	it wo from: b/M _r (of the amino acid species) arge (on the amino acid species) aperature io of the <u>concentration</u> of a solute in each of two (immiscible	a) solvents	2	× [1 [2
(C)	ore	equilibrium constant representing the distribution of a solute $C = [X]_a/[X]_b$ (at a constant temperature)		vents	[1 [1]
(d)	(i)	$K_{pc} = [Z \text{ in ether}]/[Z \text{ in } H_2O] - allow reverse ratio40 = (x/0.05)/((4-x)/0.5)$			[1
		= 3.2 g		ecf	[1
	(ii)	First extraction 40 = (x/0.025)/((4–x)/0.5) x = 2.67 g		ecf	[1
	(iii)	Second extraction: 1.33g remain in solution Second extraction 40 = (y/0.025)/((1.33-y)/0.5) y = 0.887 g			
		mass extracted = 2.67 + 0.89 = 3.56/3.6 g		ecf	[1
					[4]
				[Total:	11]

	Page 1		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	42
8	(a) (i	i) ((nitrates are) soluble		[1]
	(i	ii) E	$Ba^{(2+)}$ and $Pb^{(2+)}$		[1]
		ç	SO4 ⁽²⁻⁾		[1]
		E	BaCO ₃ /PbCO ₃ /CaSO ₄ are insoluble		[1]
					[4]
	(b) (i) f	fertilisers/animal manure		[1]
	(i	i) v	washing powder/detergents/fertilisers/animal manure		[1]
	(ii		growth/production of algae/weeds/plants or eutrophication		[1]
					[3]
	(c) (i	i) á	any one of:		
		2	$2SO_2 + O_2 \longrightarrow 2SO_3$ and $SO_3 + H_2O \longrightarrow H_2SO_4$		
		C	or SO ₂ + NO ₂ \longrightarrow SO ₃ + NO and SO ₃ + H ₂ O \longrightarrow H ₂ S	O ₄	

or SO ₂ + $\frac{1}{2}O_2$ + H ₂ O \longrightarrow H ₂ SO ₄	[1]
	r.1

(ii)	roasting sulfide ores/extraction of metals from sulfide ores	[1]

[2]

[Total: 9]