MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

MMM. Hiremepapers.com

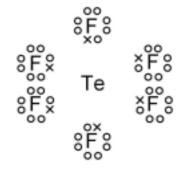
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9701	22


1 (a)

number of bond pairs	number of lone pairs	shape of molecule	formula of a molecule with this shape
3	0	trigonal planar	BH_3
4	0	tetrahedral	CH₄ allow other Group IV hydrides
3	1	pyramidal or trigonal pyramidal	NH₃ allow other Group V hydrides
2	2	non-linear or bent or V-shaped	H₂O allow other Group VI hydrides

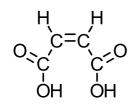
1 mark for each correct row

(3 × 1) [3]

(b) (i)

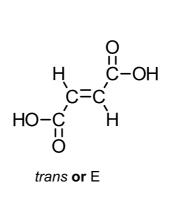
(ii)	octahedral or square-based bipyramid	(1)	
(iii)	90°	(1)	[3]

[Total: 6]


(1)

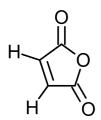
	Pa	Page 3			e 3 Mark Scheme GCE AS/A LEVEL – October/November 2013					Syllabus	Paper	•
				GCE	AS/A LEVE	EL – Octobe	er/Novem	ber 2013	3	9701	22	
2	(a)	117	7° to 1	20°							(1)	[1]
	(b)	(i)	elect	rophilic a	ddition						(1)	
		(ii)										
				H			Н			н		
			Cl	_ċ、	Н	н	∠ċ∖	н	н	∠ċ∖	Cl	
				/ H	\searrow		ц /			´ ¦ `		
			Ç–		—`ç	ç—		-`Ç	ç—		-`Ç	
			Η		Cl	Cı		l Cl	Η		Cl	
			1 ma	ark for ea	ch correct s	tructure						
						ical isomers	of the firs	st structu	re		(3 × 1)	[4]
											[Tota	al: 5]
											-	-
3	(a)	(i)	anoo	de (Cl [−] (aq) →	½ C <i>l</i> ₂(g) +	e⁻				(1)	
			cath		,	$e^- \rightarrow \frac{1}{2}H_2(g)$ $2e^- \rightarrow H_2(g)$		(aq)			(1)	
		(ii)	beca	iuse iron	in steel will	react with c	hlorine				(1)	[3]
	(b)	500	dium									
	(6)	bur	ns wit		w or orange	e flame or						
				vhite solic nce onlv		chlorine dis	appears				(1)	
				$l_2 \rightarrow 2N$							(1)	
		pha	ospho	orus								
		bur	ns wit	h a white	e or yellow f disappears	lame or – if not give	en for Na -	- or				
		for	PC <i>1</i> ₅	f	forms a whit	te or pale ye	ellow solid					
		for	РС <i>1</i> ₃	f	forms a colo	ourless liquid	ł				(1)	
		Ρ·	+ 2½	$Cl_2 \rightarrow F$	PC l ₅	or P ₄ + 10	$Cl_2 \rightarrow 4l$	PC <i>l</i> ₅				
		or										
		Ρ·	+ 1½	$Cl_2 \rightarrow F$	PC l ₃	or P ₄ + 60	$c_{l_2} \rightarrow 4P$	Cl ₃				
		equ	uation	must refe	er to compo	und describ	ed				(1)	[4]

Pa	ge 4	Mark Scheme	Syllabus	Paper	•
		GCE AS/A LEVEL – October/November 2013	9701	22	
(c)	cold dilu	ute aqueous NaOH			
	NaOC1			(1)	
	+1			(1)	
	hot cone	centrated aqueous NaOH			
	NaC1O3			(1)	
	+5			(1)	[4]
(d)	MgCl ₂ 6	6.5 to 6.9		(1)	
	SiC14	0 to 3		(1)	
	• -	issolves without reaction or			
	S	light or partial hydrolysis occurs		(1)	
	-	eacts with water or ydrolysis occurs		(1)	
		$H_2O \rightarrow SiO_2 + 4HCl$ or			
		$H_2O \rightarrow Si(OH)_4 + 4HCl \text{ or}$ $H_2O \rightarrow SiO_2.2H_2O + 4HCl$		(1)	[5]
				[Total:	· 161
				[]
4 (a)	(i) H ₂ X	+ 2NaOH \rightarrow Na ₂ X + 2H ₂ O		(1)	
	(ii) <i>n</i> (Oł	H^{-}) = $\frac{21.6 \times 0.100}{1000}$ = 2.16 × 10 ⁻³ mol		(1)	
((iii) <i>n</i> (R)	$= n(H_2X) = \frac{2.16 \times 10^{-3}}{2}$			
		$= 1.08 \times 10^{-3}$ mol in 25.0 cm ³		(1)	
((iv) n(R)	= $1.08 \times 10^{-3} \times \frac{250}{25.0} = 0.0108 \text{ mol in } 250 \text{ cm}^3$		(1)	
		08 mol of R = 1.25 g of R			
	1 ma	bl of R = $\frac{1.25 \times 1}{0.0108}$ = 115.7 = 116 g		(1)	[5]


Page 5		Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2013	9701	22	
(b) (i)	$M_{\rm r}$ of	f S = 116 f T = 134 f U = 150 all three needed		(1)	
(ii)	S			(1)	[2]
or ⊦	ю. H ₂ H ₃ PO	SO ₄ followed by H ₂ O 4 followed by H ₂ O or 1d H ₃ PO ₄ catalyst		(1 + 1)	
KMı	•	e acidified or cold dilute alkaline		(1) (1)	
P ₄ O		conc. H_2SO_4 or conc. H_3PO_4 or Al_2O_3 in each case		(1)	[5]
(d) T re	eactin	g with an excess of Na			
Nac	O₂CC	H(ONa)CH ₂ CO ₂ Na		(1)	
U re	eactin	g with an excess of Na ₂ CO ₃			
NaC	O₂CC	H(OH)CH(OH)CO₂Na		(1)	[2]

cis **or** Z

two correct structures correct labels


(1) (1) [2]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9701	22

(f) correct ring of C and O atoms, i.e.

correct compound, i.e.

= 2200 kJ mol⁻¹

(hydrogen atoms do not need to be shown)

[Total: 18]

(1)

[5]

(1) [2]

5	(a) (i)	alkanes or paraffins not hydrocarbons	(1)	
	(ii)	$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$	(1)	[2]
	(b) (i)	carbon allow graphite	(1)	
	(ii)	$2C_4H_{10}$ + $5O_2 \rightarrow 8C$ + $10H_2O$ allow balanced equations which include CO and/or CO_2	(1)	[2]
	is l	thalpy change when 1 mol of a substance ournt in an excess of oxygen/air under standard conditions is completely combusted under standard conditions	(1) (1)	[2]
	(d) (i)	$m = \frac{pVM_r}{RT} = \frac{1.01 \times 10^5 \times 125 \times 10^{-6} \times 44}{8.31 \times 293} \text{ g}$	(1)	
		= 0.228147345 g = 0.23 g	(1)	
	(ii)	heat released = m c δ T = 200 × 4.18 × 13.8 J = 11536.8 J = 11.5 kJ	(1) (1)	
	(iii)	0.23 g of propane produce 11.5 kJ 44 g of propane produce $\frac{11.5 \times 44}{0.23}$ kJ		
		1		

Page 7	,	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2013	9701	22
(e) (i)	there	methane to butane e are more electrons in the molecule efore greater/stronger van der Waals' forces		(1) (1)
(ii)	there	ght chain molecules can pack more closely efore stronger van der Waals' forces everse argument		(1) (1) [4]
				[Total: 15]