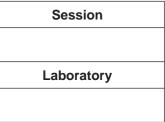


READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Give details of the practical session and laboratory where appropriate, in the boxes provided.Write in dark blue or black pen.You may use a soft pencil for any diagrams, graphs or rough working.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.


Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 12 and 13. A Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
Total				

This document consists of 14 printed pages and 2 blank pages.

1 You are to determine the enthalpy change of the reaction between hydrochloric acid and sodium hydroxide by adding various volumes of acid and alkali and measuring the change in temperature.

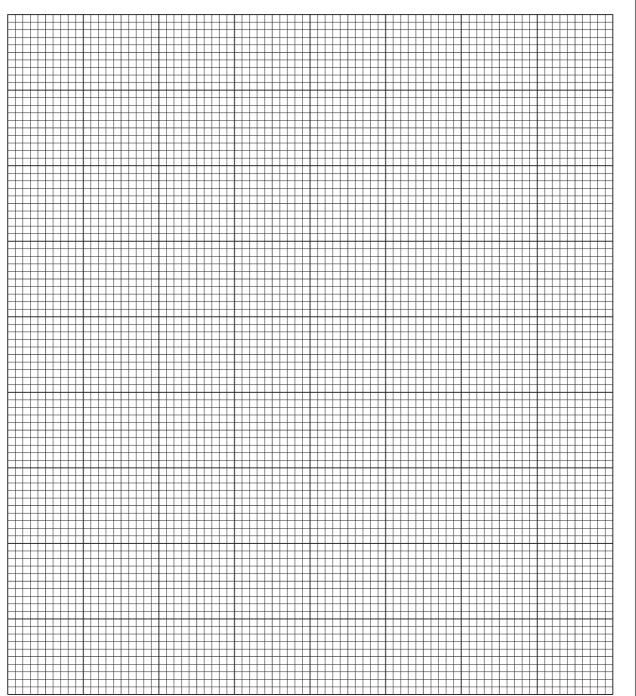
2

FA 1 is 0.950 mol dm⁻³ hydrochloric acid, HC*l*. **FA 2** is aqueous sodium hydroxide, NaOH.

(a) Method

- Support the plastic cup in a 250 cm³ beaker.
- Using a measuring cylinder, transfer 25 cm³ of **FA 1** into the cup and measure the temperature of the acid. Tilt the cup if necessary to cover the bulb of the thermometer.
- Record this initial temperature.

initial temperature of FA 1 = $\dots ^{\circ}C$


- Use a second measuring cylinder to transfer 10 cm³ of **FA 2** and 25 cm³ of water into a 100 cm³ beaker.
- Add this mixture to the plastic cup and stir.
- Measure the maximum temperature reached and record this maximum temperature in the table below.
- Rinse out the plastic cup and shake it to remove excess water.
- Repeat the experiment, using the volumes of **FA 1**, **FA 2** and water shown in the table. Record the maximum temperature for each experiment.

volume FA 1 /cm ³	volume FA 2 /cm ³	lume FA 2 /cm ³ volume water/cm ³	
25	10	25	
25	15	20	
25	20	15	
25	25	10	
25	30	5	
25	35	0	

You are going to plot a graph using these results to find the volume of **FA 2** that gives the greatest maximum temperature.

Before you plot the graph, choose two further volumes of **FA 2** that will allow you to find more precisely the volume that gives the greatest maximum temperature.

Record the volumes you choose, carry out the experiments and record the corresponding maximum temperatures, in the table. [2]

(b) (i) On the grid below, plot the maximum temperature on the *y*-axis against the volume of **FA 2** on the *x*-axis.

For Examiner's Use

- (ii) Draw two straight lines of best fit on your graph, one to show where the temperature was increasing and the other after the greatest maximum temperature had been reached.
- (iii) Using your graph and the initial temperature recorded in (a), determine the maximum temperature **change** that could occur when 25 cm³ of **FA 1** react with **FA 2**.

maximum temperature **change** =°C [5]

Cal	lculation					
(i)	Calculate the energy needed to produce the temperature change in (b)(iii) . (Assume that 4.3J of heat energy changes the temperature of 1.0 cm^3 of solution by $1.0 \degree$ C.)	Use				
	energy needed = J					
(ii)	Calculate the number of moles of HC <i>l</i> used in each experiment.					
	moles of HCl = mol					
(iii)	Calculate the enthalpy change, in kJ mol ⁻¹ , when 1 mole of HC <i>l</i> reacts with NaOH.					
	enthalpy change = kJ mol ⁻¹ (sign) (value) [3]					
	(sign) (value) [[5] [Total: 10]					
	(i) (ii)	(Assume that 4.3 J of heat energy changes the temperature of 1.0 cm ³ of solution by 1.0 °C.) energy needed = J (ii) Calculate the number of moles of HC <i>l</i> used in each experiment. moles of HC <i>l</i> = mol iii) Calculate the enthalpy change, in kJ mol ⁻¹ , when 1 mole of HC <i>l</i> reacts with NaOH. enthalpy change = kJ mol ⁻¹ (sign) (value) [3]				

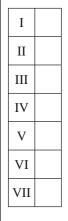
2 The identity of a metal, M, can be found by titrating a solution of its carbonate with hydrochloric acid of known concentration.

FA 3 is a solution of the metal carbonate, M_2CO_3 , of concentration 6.90 g dm⁻³.

You are to dilute the hydrochloric acid that you used in **Question 1** and then titrate the carbonate solution with this acid.

(a) Method

Dilution of the acid


- Pipette 25.0 cm³ of FA 1 into the 250 cm³ volumetric (graduated) flask labelled FA 4.
- Add distilled water to make the total volume 250 cm³.
- Stopper the flask and mix the contents thoroughly.

Titration

- Fill the burette with diluted hydrochloric acid, FA 4.
- Use a clean pipette to transfer 25.0 cm³ of **FA 3** into a conical flask.
- Titrate **FA 3** with **FA 4** using the indicator provided.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of **FA 4** added in each accurate titration.

For Examiner's Use

[1]

6

Show clearly how you obtained this value.

(c) Calculation

below.

(b) From your accurate titration results, obtain a suitable value to be used in your calculations.

The equation for the reaction between hydrochloric acid and the metal carbonate is given $M_2CO_3 + 2HCl \rightarrow 2MCl + CO_2 + H_2O$ (i) Calculate the number of moles of hydrochloric acid present in the volume in (b). moles of HC*l* = mol

25.0 cm³ of FA 3 required cm³ of FA 4

- (ii) Hence, calculate the number of moles of M_2CO_3 present in 25.0 cm³ of FA 3.
 - moles of M_2CO_3 = mol

(iii) Calculate the concentration of M_2CO_3 in **FA 3** in moldm⁻³.

concentration of $M_2CO_3 = \dots \mod dm^{-3}$

(iv) Use your answer to (iii), and the fact that FA 3 contains 6.90 g dm⁻³, to determine the relative atomic mass, A_r, of M.

 A_r of M =

(v) Use your answer to (iv) and the Periodic Table on page 16 to suggest the identity of M.

M is [5]

(d)	The concentration of a carbonate solution could be found using either the method in	For Examiner's
	Question 1 or that in Question 2.	Use

(i) Suggest, and explain, which of the methods is more accurate.

(ii) For the method that you think is less accurate, suggest an improvement to the practical procedure that could be made to improve the accuracy.
[2]

[Total: 15]

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations. **No additional tests for ions present should be attempted.**

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

(a) You are provided with a solid, FA 5. FA 5 is a mixture that contains two anions and two cations.

To all your sample of **FA 5** in a boiling tube add 3 cm depth of distilled water. Shake the tube and filter the contents. Keep the solid residue for tests in (b) and the filtered solution for tests in (c).

(b) (i) Open up the filter paper and scrape the residue into a boiling tube. Add dilute nitric acid, HNO₃, using a dropping pipette until the solid **just** disappears. Record your observations and keep the solution for tests in (ii).

observations

.....

(ii) Divide the solution from test (i) equally into three test-tubes.

To the first test-tube add aqueous sodium hydroxide, NaOH, until in excess. Record your observations.

observations

Which cations, from those listed in the Qualitative Analysis Notes on page 12, would give these observations?

.....

(iii) You are to devise tests that will positively identify which one of the cations you have suggested in (ii) is present. For each of the possible ions you should indicate the test and the expected result for each test in a suitable table in the space below.

Use the solutions in the second and third test-tubes to carry out these tests and

For Examiner's Use

Identify the cation present.

The cation present is

record your observations in the space below.

[7]

(c)	To 1 cm depth of filtered solution from (a) in a test-tube add 1 cm depth of dilute nitric acid followed by a few drops of aqueous silver nitrate. Record your observation.					
	observation					
	Which further reagent could be added to this test-tube to help you to confirm the nature of the anion present?					
	reagent					
	Carry out a test using this additional reagent. Record your observation and conclusion about the anion present.					
	observation					
	The anion present is[2]					
(d)	Using your observation in (b)(i) state which other anion is present in FA 5.					
	The anion present is[1]					

(e) Solutions **FA 6** and **FA 7** each contain one of the ions sulfite, SO_3^{2-} , sulfate, SO_4^{2-} , nitrite, NO_2^{-} , or nitrate, NO_3^{-} .

For Examiner's Use

(i) Carry out the tests in the table below to identify which ion is present in each solution.

(a.c.)	observations				
test	FA 6	FA 7			
To 1 cm depth of solution in a boiling tube, add a small piece of aluminium foil and 1 cm depth of aqueous sodium hydroxide. Warm the mixture with care .					
To 1 cm depth of solution in a test-tube, add a few drops of aqueous barium chloride or barium nitrate, then					
add dilute hydrochloric acid.					
To 1 cm depth of solution in a test-tube, add 1 cm depth of dilute hydrochloric acid.					

(ii) From your observations, identify the anion present in each solution.

FA 6 contains

FA7 contains

(iii) What type of reaction takes place when a positive observation is seen with aluminium foil and aqueous sodium hydroxide in (i)?

.....

[5]

[Total: 15]

Qualitative Analysis Notes

Key: [*ppt.* = *precipitate*]

1 Reactions of aqueous cations

	reaction with				
ion	NaOH(aq)	NH ₃ (aq)			
aluminium, A <i>l</i> ³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess			
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	-			
barium, Ba²+(aq)	no ppt. (if reagents are pure)	no ppt.			
calcium, Ca²⁺(aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.			
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess			
copper(II), Cu²+(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution			
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess			
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess			
lead(II), Pb²+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess			
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess			
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess			
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess			

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chromate(VI), $CrO_4^{2-}(aq)$	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br⁻(aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$); gives white ppt. with Pb ²⁺ (aq)
iodide, I ⁻(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in $NH_3(aq)$); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ ⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil; NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)
sulfate, SO ₄ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ^{2–} (aq)	SO_2 liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result			
ammonia, NH ₃	turns damp red litmus paper blue			
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)			
chlorine, Cl_2	bleaches damp litmus paper			
hydrogen, H ₂	"pops" with a lighted splint			
oxygen, O ₂	relights a glowing splint			
sulfur dioxide, SO ₂	turns acidified aqueous potassium dichromate(VI) from orange to green			

BLANK PAGE

BLANK PAGE

		0	4.0 Helium	20.2 Neon 10	39.9 Ar Argon	83.8 Krypton 36	131 Xenon 54	Radon 86	Ununoctium 118	175 Lutetium 71	Lawrencium 103
		١١٨		19.0 Fluorine	35.5 C1 ^{Chlorine}	79.9 Br Bromine 35	127 	At Astatine 85		173 Yb 70	Nobelium 102
		N		16.0 Oxygen 8	32.1 S uffur 16	79.0 Se Selenium 34	128 Te ^{Tellurium}	Polonium 84	Ununhexium 116	169 Thulium 69	Mendelevium 101
		>		14.0 Nitrogen 7	31.0 Phosphorus 15	74.9 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83		167 Er Erbium	100 Fermium
		IV		12.0 C Carbon 6	28.1 Si Silicon	72.6 Ge Germanium 32	119 Sn	207 Pb Lead 82	Ununquadium 114	165 Holmium 67	E Einsteinium 99
		≡		10.8 Boron 5	27.0 Aluminium 13	69.7 Ga Gallium 31	115 1 Indium 49	204 T1 Thallium 81		163 Dysprosium 66	
ents						65.4 Zn ^{Zinc}	112 Cadmium 48	201 Hg ^{Mercury} 80	Uub Ununbium 112	159 76 Terbium	BK Berkelium 97
le Eleme	Group					63.5 Cu Copper	108 Ag Silver	197 Au ^{Gold}	Unununium 111	157 Gd Gadolinium 64	e Carium ⁹⁶
The Periodic Table of the Elements						58.7 Ni Nickel	106 Pd Palladium 46	195 Pt Platinum 78	Ununnilium 110	152 Eu Europium 63	Americium 95
						58.9 CO Cobalt 27	103 Rhođium 45	192 	Mt Meitnerium 109	150 Samarium 62	Pu ^{tonium}
			1.0 Hydrogen			55.8 Fe Iron 26	101 Rut Ruthenium 44	190 OS Osmium 76	HS Hassium 108	Promethium 61	Neptunium 93
						54.9 Manganese 25	Tc Technetium	186 Re Rhenium 75	Bh Bohrium 107	144 Neodymium 60	
						52.0 Cr Chromium 24	95.9 Mo Molybdenum 42	184 V Tungsten 74	Sg Seaborgium 106	141 Praseodymium 59	Protactinium 91
						50.9 Vanadium 23	92.9 Nicbium	181 Ta Tantalum 73	Db Dubnium 105	Cerium 58	Do Thorium 90
						47.9 T	91.2 Zr Zirconium 40	178 Hafnium 72	Rf Rutherfordium 104	*	nic mass † bol nic) number
						45.0 SC Scandium 21	88.9 Yttrium 39	139 La Lanthanum 57	Actinium 89 ↑	ş	a = relative atomic mass † X = atomic symbol b = proton (atomic) number
		=		9.0 Ber yllium 4	24.3 Mg Magnesium 12	40.1 Ca Calcium 20	87.6 Strontium 38	137 Baa 56	Radium 88	*58-71 Lanthanides 190-103 Actinides	ت × ت
		_		6.9 Lithium 3	23.0 Na Sodium	39.1 Potassium	85.5 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L. †90-103 /	ه ۲

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.