CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

9701 CHEMISTRY

9701/42

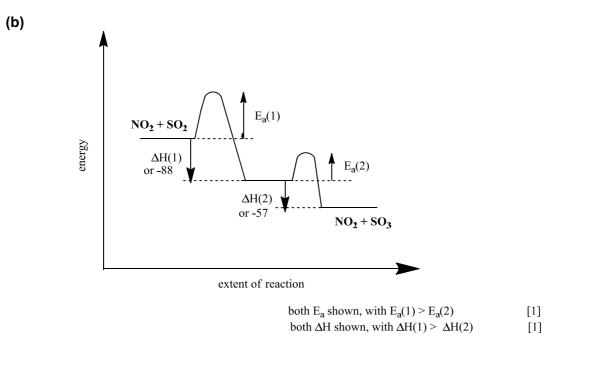
Paper 4 (A2 Structured Questions), maximum raw mark 100

www.tiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

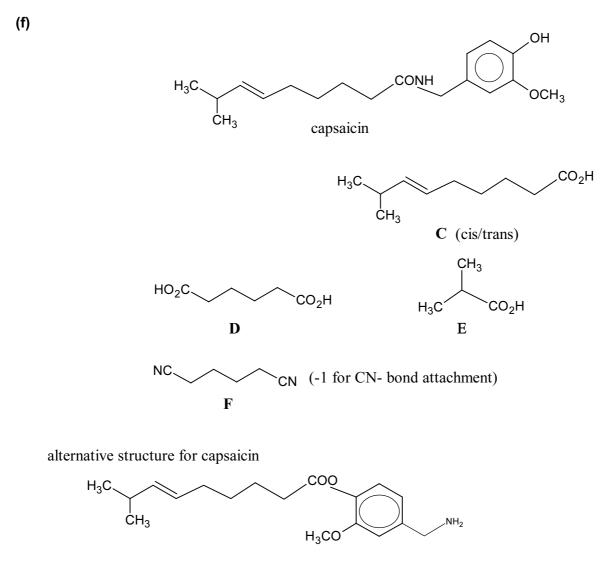
Cambridge will not enter into discussions about these mark schemes.


Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2			Paper	
		GCE A LEVEL – October/November 2012	9701	42
1 (a) SiC	: <i>l</i> 4: wł	nite solid or white/steamy fumes		[1]
SiC	;14 + 2	$H_2O \longrightarrow SiO_2 + 4HCl$		[1]
	-	tes <i>or</i> white/steamy fumes $H_2O \longrightarrow H_3PO_4 + 5HCl$		[1] [1] [4]
(b) (i)	MnC	$D_4^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$		[1]
(ii)	5 : 1			
(iii)	n(Mr	nO_4^-) = 0.02 × 15/1000 = 3 × 10 ⁻⁴ (mol)		[1]
(iv)	n(Fe	$(2^{2^+}) = 5 \times 3 \times 10^{-4} = 1.5 \times 10^{-3}$ (mol) ecf from (i) or (ii)		[1]
(v)	[Fe ²⁺	⁺] = 1.5 × 10 ⁻³ × 1000/2.5 = 0.6 (mol dm ⁻³) ecf from (iv)	[1]
(vi)		e original solution, there was 0.15 mol of Fe ³⁺ in 100 cr e partially-used solution, there is 0.06 mol of Fe ²⁺ in 10		
	So re	emaining Fe ³⁺ = 0.15 – 0.06 = 0.09 mol. ecf from (v)		[1]
	This	can react with 0.045 mol of Cu, which = 0.045×63.5	= 2.86 g of coppe	er. ecf [1]
				[6]
		oken are Si-Si and C <i>l</i> -C <i>l</i> = 222 + 244 = 466 kJ mol ⁻¹ rmed are 2 × Si-C <i>l</i> = 2 × 359 = 718 kJ mol ⁻¹		
		5 <u>2</u> kJ mol ⁻¹		[2]
				[2]
(d) (i)	Ca ₂ S	Si + 6 H ₂ O \longrightarrow 2 Ca(OH) ₂ + SiO ₂ + 4 H ₂		[1]
(ii)	silco	n has been oxidised <u>AND</u> hydrogen has been reduced	1	[1]
				[2]
				[Total: 14]

	Page	3	Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2012	9701	42
2	(a) (i)		CuSO ₄ silver		[1] [1]
	(ii)		bridge meter		[1] [1]
					[4]
	(b) (i)	0.80	0-0.34 = (+) 0.46 V		[1]
	(ii)		$E_{Ag \ electrode}$ must = 0.80 – 0.29 = 0.51 V		[1]
	(iii)	0.51	$= 0.80 + 0.06\log [Ag^+]$, so $[Ag^+] = 10^{(-0.29/0.06)} = 1.47 \text{ x}$	<u>10⁻⁵</u> moldm ⁻³ eo	cf from (ii) [1]
					[3]
	(c) (i)	K _{sp} : unit	= $[Ag^{+}]^{2}[SO_{4}^{2-}]$ s = mol ³ dm ⁻⁹ ecf on K_{sp}		[1] [1]
	(ii)	[SO	$_{4^{2^{-}}}] = [Ag^{+}]/2 K_{sp} = (1.6 \times 10^{-2})^{2} \times 0.8 \times 10^{-2} = 2.05 \times 10^{-2}$	<u>0−</u> 6 (mol ³ dm ^{−9})	[1]
					[3]
	(d) Ag	gC <i>l</i>	white		[1]
	Ag Ag	•	cream yellow		[1] [1]
	-		y decreases down the group		[1]
	00		y decredees down the group		
					[4]
	(e) so	lubility	v decreases down the group		[1]
			onic radius increases ice energy <u>and</u> hydration(solvation) energy to decrease	9	[1] [1]
			change of solution becomes more endothermic		[1]
					[4]
					[Total: 18]

	Page 4		ļ	Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – October/November 2012	9701	42	
3	(a)	(i)	hete	rogeneous: different states <u>AND</u> homogeneous: same	state		[1]
		(ii)		correct allocation of the terms <i>heterogeneous</i> and <i>hom</i> lysts	<i>ogeneous</i> to co	mmon	[1]
			example of heterogeneous, e.g. Fe (in the Haber process) linked to correct system equation, e.g. $N_2 + 3H_2 \longrightarrow 2NH_3$			[1] [1]	
				<i>catalyst works,</i> adsorption (onto the surface) for non-iron catalyst			[1]
			exar	nple of homogeneous, e.g. Fe^{3+} or Fe^{2+} (in $S_2O_8^{2-}$ + I^-) linked to correc	ct system	[1]
			equa	ation, e.g. $S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$			[1]
				catalyst works, e.g. $Fe^{3+} + I^- \longrightarrow Fe^{2+} + \frac{1}{2}I_2$ for non-iron catalyst			[1]
							[8]



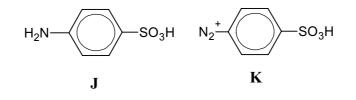
[2]

	Page 5	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2012	9701	42
4	(a) K ₂ Cr ₂ O ₇	+ H^+ + heat under reflux		[1]
	(b) nucleopt	nilic substitution		[1]
	(c) heat und	ler reflux + aqueous HC <i>l</i>		[1]
	(d) alkene			[1]
	(e) amide <i>ol</i>	rester		[1]

[5]

[5]

Page 6	Mark Scheme	Syllabus	Paper	
	GCE A LEVEL – October/November 2012	9701	42	
5 (a) pheno ketone			[1 [1	
			[2	


(b)

reagent	observation	structure of product	type of reaction
sodium metal	effervescence /bubbles/fizzing		redox
aqueous bromine	decolourises or white ppt.	Br HO Br	electrophilic substitution
aqueous alkaline iodine	yellow ppt.	HO CO ₂ Na	oxidation

[2]

[8]

(c) (i)

[1] + [1]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9701	42
(ii) ste	p 1: NaNO ₂ + HC <i>l or</i> HNO ₂		[1]
at	Г < 10°С		[1]
ste	p 2: (add K to a solution of G) in aqueous NaOH		[1]
			[5]
(d) (CH₃Cŀ	$\begin{array}{c} \text{SOC} l_2/\text{PC} l_5 \\ /\text{PC} l_3 + \text{heat} & \text{add to } \mathbf{G} \text{ (in NaOl} \\ I_2\text{CO}_2\text{H}) \xrightarrow{\qquad} \text{CH}_3\text{CH}_2\text{COC} l \xrightarrow{\qquad} \\ \hline \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 1 \end{bmatrix} \end{array}$	· · · · ·	
ecf froi	n CH₃COOH		[3]

[Total: 18]

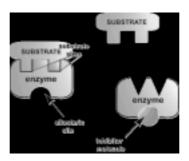
Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9701	42

Section B

6 (a)

bonding	structure involved
disulfide bonds between parts of the chain	tertiary
hydrogen bonds in a β -pleated sheet	secondary
ionic bonds between parts of the chain	tertiary
peptide links between amino acids	primary

zero/one correct only \rightarrow [0], two correct only \rightarrow [1], three correct only \rightarrow [2] all four correct [3]


[3]

(b) labelled diagrams such as:

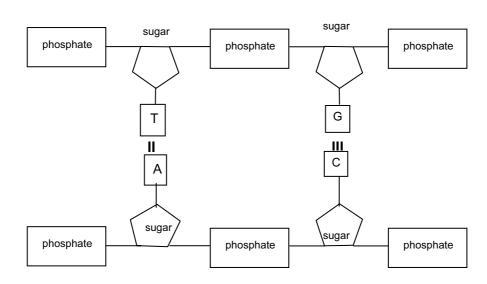
Competitive any two from:

- complementary shape to substrate / able to bind to active site of enzyme
- so preventing the substrate from binding / able to compete with substrate
- can be overcome by increasing [substrate]

Non-competitive: any two from:

- binds elsewhere in the enzyme than active site / at an allosteric site
- this changes the shape of the active site

cannot be removed by increasing [substrate]


2 × [1]

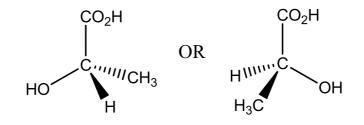
2 × [1]

[4]

Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9701	42

(c)

A and C and other strand correct	[1]
H-bonds labelled	[1]
adenine <u>AND</u> cytosine	[1]


[3]

[Total: 10]

(a) (i)	Electrophoresis	[1]
(ii)	Using a restriction enzyme.	[1]
(iii)	The phosphate group.	[1]
		[3]
(b) (i)	X labelled correctly on diagram.	[1]
(ii)	Suspect 2 AND matches crime scene 1 or matches at least one crime scene.	[1]
		[2]
	(ii) (iii) (b) (i)	 (ii) Using a restriction enzyme. (iii) The phosphate group. (b) (i) X labelled correctly on diagram.

Page 10	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9701	42
(c) P is	CH ₃ CO ₂ CH ₂ CH ₃		[
-	four of:		
•	3 different (proton) environments	$(0, 2)/(1, 1, \sqrt{2}, 1)$	- 4 corbono
•	(M and M+1 data shows no of carbons present is) (100 × the NMR spectrum shows 8 hydrogens leaving 32 mass is	, , , ,	
· ·	$M_r = 88$ and (molecular formula is) C ₄ H ₈ O ₂		
٠	4 peaks/quartet (at 4.1) shows an adjacent 3H/CH ₃		
	3 peaks/triplet (at 1.3) shows an adjacent 2H/CH ₂		
•	(peak at) 2.0/singlet shows CH ₃ CO (group)		、 、
•	(peak at) 4.1/quartet and 1.3/triplet shows presence of et	hyl/CH ₃ CH ₂ (grou	ip) 4 × [′
			- · · [
			[{
			[Total: 10
(a) (i)	It could denature the enzyme or		
(u) (i)	alter the 3D structure/tertiary structure/shape of active site	9.	[
(ii)	condensation		[
			[2

(b)

[1]

[1]

(c) (i) (Acid present would) hydrolyse the ester (linkage) [1]

or correct diagram of the S isomer

(ii) (Hot water would) **soften** (the container)

[2]

[1]

Page 1	1 Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9701	42
(d) (i)			
	0		
	ester linkage shown rest of repeat unit correct (ONE)		[1] [1]
(ii)	van der Waals' from CH₃/methyl group permanent dipole-dipole from ester group		[1] [1]
(iii)	Accept any sensible physical property suggestion e.g. density <i>or</i> different solubility.	lifferent melting poi	nt <i>or</i> different [1]

[5]

[Total: 10]