MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2	2	Mark Scheme: Teachers' version						Paper
			GCE A LEVEL – May/June 2011						41
1	• •	•	oond is (v olecule f	• •	strong polarity				[1]
		$g(s) \rightarrow g(s) \rightarrow 2$				148 + 3 × 21 + 2 × 2148			
	LE	$= -\Delta H_1$	$-\Delta H_2 -$	461	= -12,753	(kJ mol⁻¹)		(–[1] for	each error) [3]
	(c) (i)	Li ₃ N +	3H ₂ O -	$\rightarrow NH$	I ₃ + 3LiOH	(balanced ed	quation)		[1]
	(ii)	advanta disadva	-	Li is e	expensive	/temperature to be recycle	-	ded/standard co	onditions used [1]
				or Li	ΟΗ by-prodι	uct is corrosiv	/e/strongly ba	asic nuous process	[1]
	(d) (i)	-	00 × 14/3 00 × 28/						[1] [1]
	(ii)	amide							[1]
	(iii)	_	_	or –	$\Rightarrow 2NH_3 + C0$ $\Rightarrow NH_2CO_2H$ $= 0 \rightarrow 2NH_3$	1 + NH ₃			[1]
	(iv)	or wou or wou	ld increa Id 'burn'	se the	trongly alkal pH of the s ops/reduce the enviror	oil plant growth	/stunt plants		[1]
									[Total: 12]

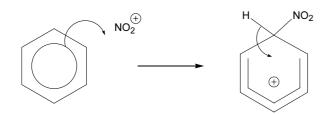
 $\ensuremath{\textcircled{\sc c}}$ University of Cambridge International Examinations 2011

Page 3			Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE A LEVEL – May/June 2011	9701	41	
2	(a) (i	i) One	that can go in either direction.		[1]	
	(ii	of a	n forward & reverse reactions are going on at the sam Il species do not change (owtte) ate of forward = rate of backward reaction	e time, but the	concentrations [1]	
	(b) (i	i) K _c :	= [H ⁺][OH ⁻]/[H₂O]		[1]	
	(ii	rear	= $[H^+][OH^-]$ rangement of equation in (i) gives $K_c[H_2O] = [H^+][OH^-]$ ne $[H_2O]$ is contained within K_w	& K _w = K _c [H ₂ O] ([1] (owtte) [1]	
	(iii		vill be higher in hot water because reaction is endother	rmic	[1]	
	(c) (i		$[-] = 5 \times 10^{-2}; [H^+] = (1 \times 10^{-14})/5 \times 10^{-2} = 2 \times 10^{-13}$ = $-\log_{10}[H^+] = 12.7$	(correct ans	[1] s = [2]) ecf [1]	
	(ii	i) [NH x ² =	A_{4}^{+}] = [OH ⁻] (= x) = 1.8 × 10 ⁻⁵ × 0.05 \Rightarrow x (= [OH ⁻]) = 9.49 × 10⁻⁴ (mol	dm ⁻³) (correc	[1] t ans = [2]) [1]	
	(iii	i) [H⁺]	= $K_w/[OH^-]$ = $(1 \times 10^{-14})/9.49 \times 10^{-4}$ = 1.05 × 10^{-11}	(mol dm ⁻³)	ecf [1]	
	(iv	/) pH =	= 11.0		ecf [1]	
				[Tota	al: 12 max 11]	
3			2; (+)3; (+)4 responds to the no. of electrons in outer/valence shell/	ost	[1] [1]	
	P	$PCl_5 + 4$	tes or white/misty fumes or heat evolved $H_2O \rightarrow H_3PO_4 + 5HCl \text{ or } PCl_5 + 3H_2O \rightarrow HPO_3 + artial hydrolysis: PCl_5 + H_2O \rightarrow POCl_3 + 2HCl)$	5HC1	[1] [1]	
	(c) (i	Thu	30.4/31 = 0.98 C $l = 69.6/35.5 = 1.96s E.F = PCl_2PCl_2) = 102, so 2 × PCl_2 = 204 ≈ 200, so M.F. = P2Cl_4$		[1] [1] [1]	
	(ii	i) cı	P P P (ignore lone pairs on Cl)		[1]	
	(iii	i) O.N	. = (+)2		[1]	
	(iv	•)₂P-P(OH)₂ or H(HO)P(=O)-P(=O)(OH)H w HO-P-OH or HO-P=O │ H	ecf from stru	ıcture in (ii) [1]	
					[Total: 10]	

© University of Cambridge International Examinations 2011

	Page 4	Mark Scheme: Teachers' v	ersion Syllabus	Paper
		GCE A LEVEL – May/June	e 2011 9701	41
4	(a) N ₂ +	$2O_2 \rightarrow 2NO_2$ (or via NO) or $2NO + O_2$	$\rightarrow 2NO_2$	[1]
	(b) (i)	catalytic converter and passing the exhau	st gases over a catalyst/Pt/Rh	[1]
	• • •	$NO_2 + 2CO \rightarrow \frac{1}{2}N_2 + 2CO_2 \text{ or similar}$ Allow $2NO_2 + CH_4 \rightarrow CO_2 + N_2 + 2H_2O$		[1]
	(owt	wouldn't be reduced. Because the reactive) e) formed from N_2 and O_2 in air during com		a particular fuel [1]
	(d) (i)	SO ₃ produces acid rain		[1]
	(ii)	$NO + \frac{1}{2}O_2 \rightarrow NO_2$		[1]
	(iii)	$K_{p} = (p_{NO}.p_{SO_{3}})/(p_{NO2}.p_{SO_{2}})$		[1]
		inits: dimensionless/none (don't accept ju	st a blank!)	[1]
	(iv)	$K_p = 99.8^2/0.2^2 = 2.5 \times 10^5$		[1]
	• • •	t will shift to the right (owtte) because the reaction is exothermic. NOT	just Le Chatelier argument	[1] [1]
				[Total: 11]

5 (a)


transformation	reagent + conditions
$C_2H_4 \rightarrow C_2H_5Cl$	HC <i>I</i> , no light or catalyst
$C_2H_5OH \rightarrow C_2H_5Cl$	conc HC1 + ZnC1 ₂ or SOC1 ₂ or PC1 ₅ or PC1 ₃ and heat
$C_2H_6 \rightarrow C_2H_5Cl$	C <i>l</i> ₂ + light
$C_2H_4 \rightarrow C_2H_4Cl_2$	C1 ₂ , no light or catalyst
$CH_3CO_2H \rightarrow CH_3COCl$	SOC I ₂ or PC I ₅ or PC I ₃ and heat
H ₃ C-C/Cl	C <i>l</i> ₂ + A <i>l</i> C <i>l</i> ₃
СН ₃ СН ₂ СІ	C1 ₂ + light or heat

[6]

© University of Cambridge International Examinations 2011

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2011	9701	41

(b) (i) production of NO₂⁺: $2H_2SO_4 + HNO_3 \rightarrow 2HSO_4^- + H_3O^+ + NO_2^+$ (accept $H_2SO_4 + HNO_3 \rightarrow HSO_4^- + H_2O + NO_2^+$)

curly arrow from ring to NO2⁺ and from C-H bond to ring
correct intermediate, including charge in the right place
Note charge area must be more than half ring[1](ii) C is C6H5CO2H[1]

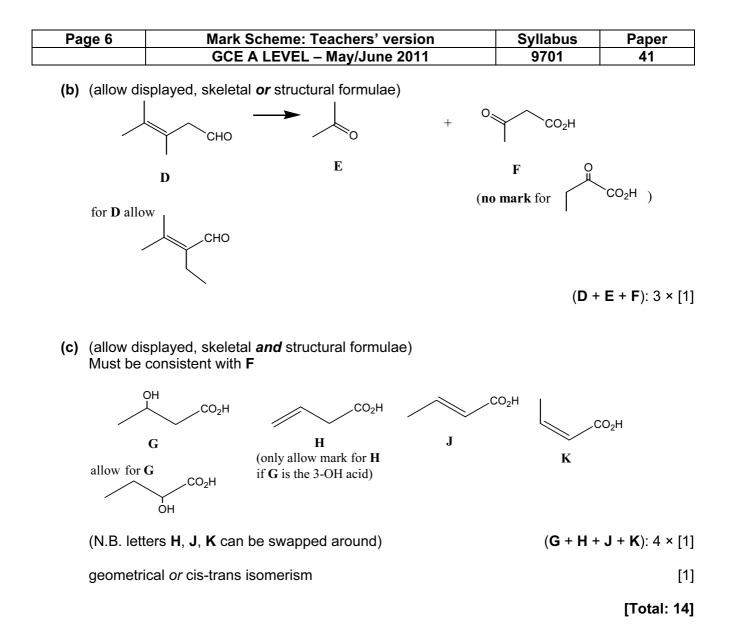
(iii) step 1: reagent is hot acidified or alkaline $KMnO_4$ [1] step 2: reagent is $Br_2 + FeBr_3/A lC l_3$ etc. (H₂O or light negates) [1]

(If ${\bf C}$ is given as 3-bromotoluene, then allow the last [2] marks if steps 1 and 2 are reversed.)

[Total: 12]

[1]

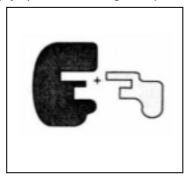
6	(a)	(i)	aqueous alkaline iodine \textit{or} I ₂ + OH ⁻ (aq)	allow NaC <i>l</i> O + KI	[1]

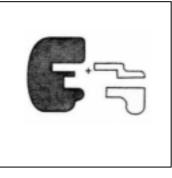

(ii)	CH₃CO- <i>or</i> CH₃CH(OH)-	[1]
------	-----------------------------	-----

- (iii) Pale yellow ppt. *or* antiseptic smell [1]
- (iv)

compound	result
CH₃OH	x
CH ₃ CH ₂ OH	\checkmark
CH₃CHO	\checkmark
CH ₃ CO ₂ H	x
С—сно	×
Сосн3	\checkmark

•**√**•**√**•**√** [3]


© University of Cambridge International Examinations 2011

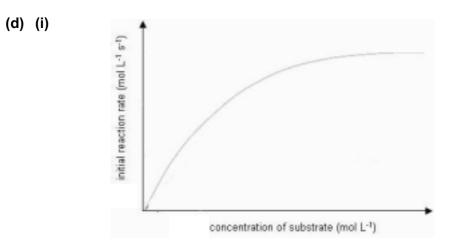

© University of Cambridge International Examinations 2011

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2011	9701	41

- 7 (a) The tertiary/3-dimensional structure/shape is held together by hydrogen/ionic/van der Waals bonds
 [1] These break (relatively) easily/are weak/break at/above 45 °C
 [1]
 - (b) (or similar diagrams)

Enzyme + substrate

Enzyme-substrate complex


Enzyme + products 3 × [1]

(c) a competitive inhibitor combines with the enzyme's active site (so preventing the substrate from binding) [1]

non-competitive inhibitor bonds with the enzyme away from the active site/at an allosteric site [1]

this changes the shape of the active site

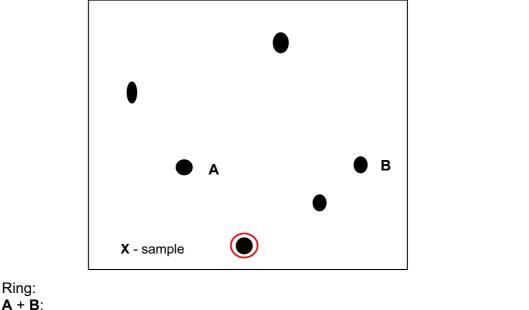
Also allow competitive inhibition can be overcome by increasing [substrate] **or** non-competitive inhibition cannot be removed by increasing [substrate] for the 3rd mark

Line must be of similar shape to original but level out below original line	[1]
---	-----

(ii) Inhibitor reduces the number of enzymes with 'working' active sites (owtte) [1]

[Total: 10]

[1]


© University of Cambridge International Examinations 2011

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2011	9701	41

8 (a) partition – separation due to the different solubilities of compounds in two solvents/phases

[1]

adsorption - separation due to the different attractions between the compounds and the stationary phase, relative to their solubility in the solvent [1] Note, if candidates do not refer to different solubilities and different attractions max 1

A + B:

(b)

[1] [1]

[1]

(c) (i) X is bromine – M and (M+2) peaks almost same height

(ii) $\frac{M}{M+1} = \frac{100}{1.1} \times \frac{9}{n} = \frac{100}{0.3}$ 1.1 × n

Hence $n = \frac{100 \times 0.3}{11 \times 9} = 3.03$ p = 3

(answer + working) [1]

(If the mass peak is at 122 and the compound contains Br and 3 C atoms then Q = (122 - 79 - 36)) thus Q = 7ecf from (ii) [1]

(The compound is C_3H_7Br)

(iii) (*R* is at m/e 43), hence $C_3H_7^+$ [1]

(d) Any two from H_2 , H_2O , CO, C_2H_4 , C_2H_2 , CH_4

[Total: 10]

2 × [1]

© University of Cambridge International Examinations 2011

	Ра	ge 9		Mark Scheme: Teachers' version					Syllab	us	Paper	
					GCE A LEVEL – May/June 2011					9701		
9 ((a)	(i)	One									[1]
		(ii)	Any	alkene (o	or allow	a cyclic	amide, a	as in capro	lactam)			[1]
	(b)	Any	, TWO	D from:	conc conc emp	lensatior lensatior irical fori	n elimina n needs a mula of a	tes a sma a molecule addition po		e n a hydroca le same as		s monomer
					(NO	T – "con	densatio	n needs tv	vo differen	t monomer	s")	2 × [1]
((c)	(i)	Wate	ər								[1]
		(ii)			\bigcirc		CH₂ C	H ₂ -0				
			'sticl	ect 'ester' ‹s' to rest e : candida	t of mol		show 'br	ackets' if r	nore than	one repeat	unit sho	[1] [1] wn
		(iii)	Poly	esters								[1]
	(d)	Мог	nome	rs in <i>Tery</i>	<i>ylene</i> ha	ave to al	ternate ir	n order to	condense	out water (owtte)	[1]
		Alke	enes	can link ir	n any o	rder (and	d still for	m a polyal	kene) (or (diagram sh	owing th	is) [1]

[Total: 10]

© University of Cambridge International Examinations 2011