UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		GCE AS/A LEVEL – May/June 2011	9701	22	
1 (a) K	$L_{c} = \frac{C}{100}$	$CH_3CH_2R][H_20]$ $H_3CH_2H][ROH]$		(1)	
no	o units			(1)	[2]
(b) (i) n(Na	aOH) = <u>22.5 x 2.00</u> = 0.045 1000		(1)	
(ii	<i>) n</i> (Na	aOH) = n(HCl) = 0.005		(1)	
(iii) CH ₃	$CO_2H + NaOH \rightarrow CH_3CO_2Na + H_2O$		(1)	
(iv	,	aOH) = 0.045 - 0.005 = 0.04 v ecf on (i) and/or (ii)		(1)	[4]
(c) (i		aOH) and $n(CH_3CO_2H) = 0.04$ H ₃ CO ₂ R) and $n(H_2O) = 0.06$		(1) (1)	
(ii) K _c =	$\frac{0.06 \times 0.06}{0.04 \times 0.04} = 2.25$			
		v ecf on wrong values in (b)(i) v ecf on wrong expression in (a)		(1)	[3]
	a for rea	action with ester is high or action with acid is low			
re	eaction	with ester is slow or with acid is fast		(1)	[1]
		um moves to RHS/more ester would be formed ain value of K_c or		(1)	
		e system to equilibrium		(1)	[2]

Mark Scheme: Teachers' version

Syllabus

Paper

[Total: 12]

Page 2

 (b) any two from non-toxic unreactive volatile non-flammable easily liquefied (1 + 1) [2] (c) in CC½F2 C-C1 bond energy is 340 kJ mol⁻1 and is weaker than C-F or C-H bonds C-C1 bond is broken by uvl or C1 free radicals are formed (1) [2] (d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming 				GCE AS/A LEVEL – Ma	ny/June 2011	9701	22	
broken 1 C=C 610 made 1 C-C 350 E //kJ mol ⁻¹ 1 H-F 562 /kJ mol ⁻¹ 1 C-F E 2812 breaking reactant bonds requires $4 \times 410 + 610 + 562 = 2812 \text{ kJ mol}^{-1}$ (1) making product bonds gives $5 \times 410 + 350 + E = (2400 + E) \text{ kJ mol}^{-1}$ (1) $\Delta H^{o}_{\text{reaction}} = -(2400 + E) + 2812 = -73 \text{ kJ mol}^{-1}$ (1) (2400 + E) = 2812 + 73 = 2885 kJ mol ⁻¹ E = 2885 - 2400 = 485 kJ mol ⁻¹ (1) allow ecf on wrong bond energy values and/or incorrect arithmetic [4] (b) any two from non-toxic unreactive volatile non-flammable easily liquefied (1+1) [2] (c) in CC l_2 F ₂ C-C l bond energy is 340 kJ mol ⁻¹ and is weaker than C-F or C-H bonds (1) C-C l bond is broken by uvl or C l free radicals are formed (1) [2]	2	(a)		$CH_2=CH_2 + HF \rightarrow$	CH₃CH₂F			
$4 \times 410^{2} + 610 + 562 = 2812 \text{ kJ mol}^{-1} \tag{1}$ $\text{making product bonds gives}$ $5 \times 410 + 350 + E = (2400 + E) \text{ kJ mol}^{-1} \tag{1}$ $\Delta H^{0}_{\text{reaction}} = -(2400 + E) + 2812 = -73 \text{ kJ mol}^{-1} \tag{1}$ $(2400 + E) = 2812 + 73 = 2885 \text{ kJ mol}^{-1}$ $E = 2885 - 2400 = 485 \text{ kJ mol}^{-1} \tag{1}$ $\text{allow ecf on wrong bond energy values and/or incorrect arithmetic} \tag{4}$ $\text{(b) any two from non-toxic unreactive volatile non-flammable easily liquefied} \tag{1+1)}$ $\text{(c) in } CCl_{2}F_{2}$ $C-Cl \text{ bond energy is 340 kJ mol}^{-1} \text{ and is weaker than C-F or C-H bonds} \tag{1}$ $C-Cl \text{ bond is broken by uvl or } Cl \text{ free radicals are formed} \tag{1}$ $\text{(d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming}}$			brok	en 1 C=C 610 made nol ⁻¹ 1 H-F <u>562</u> /kJ mo	1 C-C 350 ol ⁻¹ 1 C-F <u>E</u>			
5 x 410 + 350 + E = (2400 + E) kJ mol ⁻¹ ΔH ^e _{reaction} = - (2400 + E) + 2812 = -73 kJ mol ⁻¹ (2400 + E) = 2812 + 73 = 2885 kJ mol ⁻¹ E = 2885 - 2400 = 485 kJ mol ⁻¹ (1) allow ecf on wrong bond energy values and/or incorrect arithmetic [4] (b) any two from non-toxic unreactive volatile non-flammable easily liquefied (1+1) [2] (c) in CCl ₂ F ₂ C-Cl bond energy is 340 kJ mol ⁻¹ and is weaker than C-F or C-H bonds C-Cl bond is broken by uvl or Cl free radicals are formed (1) [2] (d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming							(1)	
(2400 + E) = 2812 + 73 = 2885 kJ mol ⁻¹ E = 2885 - 2400 = 485 kJ mol ⁻¹ (1) allow ecf on wrong bond energy values and/or incorrect arithmetic [4] (b) any two from non-toxic unreactive volatile non-flammable easily liquefied (1 + 1) [2] (c) in CC l ₂ F ₂ C-Cl bond energy is 340 kJ mol ⁻¹ and is weaker than C-F or C-H bonds C-Cl bond is broken by uvl or Ct free radicals are formed (1) [2] (d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming							(1)	
allow ecf on wrong bond energy values and/or incorrect arithmetic (b) any two from non-toxic unreactive volatile non-flammable easily liquefied (c) in CC½F2 C-Cl bond energy is 340 kJ mol·1 and is weaker than C-F or C-H bonds C-Cl bond is broken by uvl or Cl free radicals are formed (1) [2] (d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming							(1)	
 (b) any two from non-toxic unreactive volatile non-flammable easily liquefied (1 + 1) [2] (c) in CC½F2 C-C1 bond energy is 340 kJ mol⁻1 and is weaker than C-F or C-H bonds C-C1 bond is broken by uvl or C1 free radicals are formed (1) [2] (d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming 			E = 288	5 - 2400 = 485 kJ mol ⁻¹			(1)	
non-toxic unreactive volatile non-flammable easily liquefied (1 + 1) [2] (c) in CCl ₂ F ₂ C-Cl bond energy is 340 kJ mol ⁻ 1 and is weaker than C-F or C-H bonds C-Cl bond is broken by uvl or Cl free radicals are formed (1) [2] (d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming			allow ecf	on wrong bond energy values a	nd/or incorrect arithm	etic		[4]
easily liquefied (1 + 1) [2] (c) in CCl ₂ F ₂ C-Cl bond energy is 340 kJ mol ⁻ 1 and is weaker than C-F or C-H bonds C-Cl bond is broken by uvl or Cl free radicals are formed (1) [2] (d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming		(b)	non-toxic unreactiv volatile	e				
C-Cl bond energy is 340 kJ mol ⁻ 1 and is weaker than C-F or C-H bonds C-Cl bond is broken by uvl or Cl free radicals are formed (1) (1) (2) (d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming							(1 + 1)	[2]
Cl free radicals are formed (1) [2](d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming		(c)	C-Cl bor	d energy is 340 kJ mol ⁻ 1 and is	weaker than C-F or C	-H bonds	(1)	
producing global warming							(1)	[2]
(ii) CO ₂ /carbon dioxide (1) [3]		(d)	` '	•	e Earth in the lower a	tmosphere		
			(ii) CO ₂	carbon dioxide			(1)	[3]

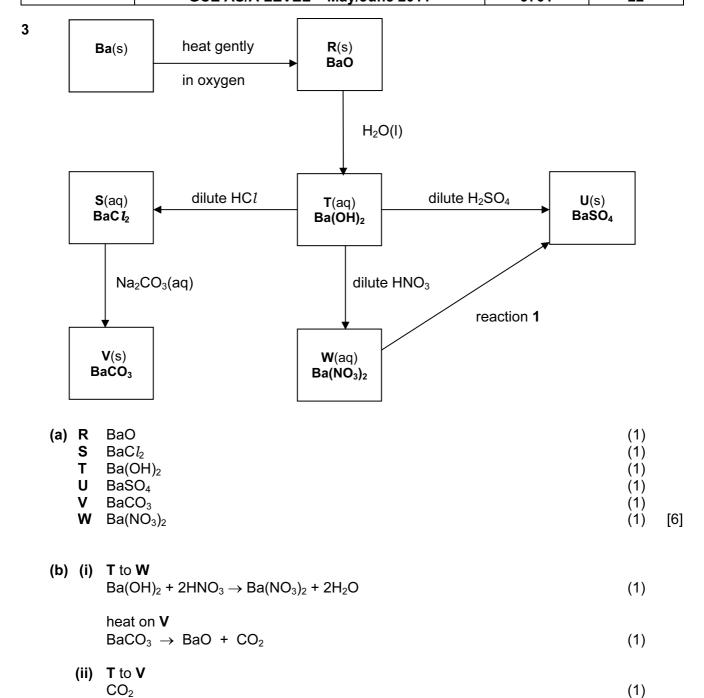
Mark Scheme: Teachers' version

Syllabus

Paper

(1)

[Total: 12]


[1]

Page 3

(e) octahedral

© University of Cambridge International Examinations 2011

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9701	22

(1)

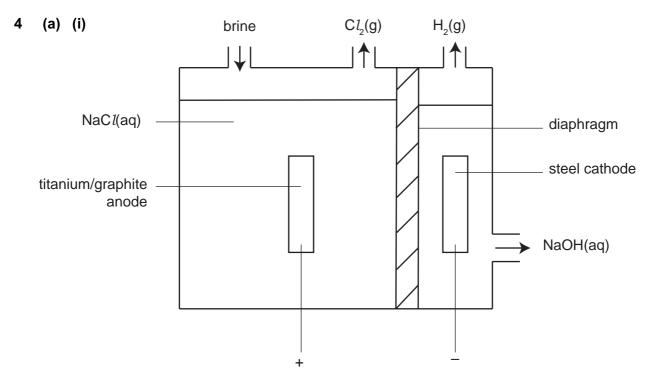
(1)

[4]

[1]

 $Ba(OH)_2 + CO_2 \rightarrow BaCO_3 + H_2O$

(c) Na₂SO₄(aq)/K₂SO₄(aq) or any soluble sulfate


Page 5 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9701	22

(d) (i)
$$Ba:O = 81.1 : 18.9 137 : 16$$

 = 0.59 : 1.18
 = 1 : 2
 gives BaO_2 (1)

(ii) $BaSO_4$ (1)

(iii)
$$BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$$
 (1) [4]

[Total: 15]

titanium/graphite anode identified correctly	(1)	
steel cathode identified correctly	(1)	
diaphragm identified correctly	(1)	
all three outlets correctly shown	(1)	[4]

(ii) anode
$$2Cl^{-}(aq) \to Cl_{2}(g) + 2e^{-}$$
 (1)
cathode $2H^{+}(aq) + 2e^{-} \to H_{2}(g)$ or $2H_{2}O(l) + 2e^{-} \to H_{2}(g) + 2OH^{-}(aq)$ (1) [2]

[Total: 7]

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2011	9701	22

5 (a) CH₂OCO(CH₂)₁₆CH₃ | CHOCO(CH₂)₁₆CH₃ | CH₂OCO(CH₂)₁₆CH₃

all three alcohol groups must be esterified

(1) [1]

(b) dilute HC*l* or dilute H₂SO₄ or dilute mineral acid or NaOH(aq) followed by dilute acid

(1) [1]

(c) $CH_3(CH_2)_7$ H C=-C $CH_2)_7CO_2H$

(1) [1]

(d) (i) fatty acid that contains more than one C=C bond

(1)

(ii) hydrogen nickel/Raney nickel/platinum/palladium

(1) (1) [3]

(e) (i) $CH_3(CH_2)_7CHO$ $OHC(CH_2)_7CX$ (1) (1)

(ii) 2,4-dinitrophenylhydrazine yellow/orange/red precipitate

(1)

(iii) Tollens' reagent silver mirror/

or Fehling's/Benedict's solution

(1)

silver mirror/ grey precipitate or brick red ppt.

(1) (1) [6]

(f) (i) two

(1)

(ii) ester

(1) [2]

[Total: 14]