MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	2	Ν	lark Scheme: Teachers' version	Syllabus	Paper
			GCE	A LEVEL – October/November 2010	9701	41
1	(a) PC	<i>l</i> ₅ + 4⊦	$H_2O \rightarrow H$	₃ PO ₄ + 5HC <i>l</i> (1)		
	SiC	2l ₄ + 2l	$H_2O \rightarrow S$	$O_2 + 4HCl$ (or giving H_2SiO_3 , $Si(OH)_4$ etc.)	(1)	[2]
	(b) bor	nd ene	C	$-S = 264 \text{ kJ mol}^{-1}$ l-Cl = 244 kJ mol ⁻¹ -Cl = 250 kJ mol ⁻¹		
	ΔH	= 8 %	× 264 + 8	× 244 – 16 × 250 = +64 kJ mol ⁻¹ (2)		[2]
	(c) (i)	+2 (1)			
	(ii)			r goes up by +2, (1) goes down by –2 (1)		
	(iii)	HC1	(can be re	ad into (iv)) (1)		
	(iv)	2SC	l ₂ + 2H ₂ O	\rightarrow S + SO ₂ + 4HC <i>l</i> (1)		
	(v)	(+ Aç (+ K ₂	gNO ₃) 2Cr ₂ O ₇)	white ppt. (1) solution turns green (1)		[7]
						[Total: 11]

2 (a) (i) A ligand is a species that contains a <u>lone pair of electrons</u>, *or* that can form a <u>dative bond</u> (to a transition element) (1)

(ii)

species	can be a ligand	cannot be a ligand
OH⁻	\checkmark	
NH_4^+		\checkmark
CH₃OH	\checkmark	
CH ₃ NH ₂	\checkmark	

 $(4 \times \frac{1}{2})$ [3]

- (b) (i) C is $[Cu(NH_3)_6]^{2+} SO_4^{2-}$ (allow $[Cu(NH_3)_4]^{2+} SO_4^{2-}$ (1) D is CuO (1) E is Na₂SO₄ (1) F is BaSO₄ (1)
 - (ii) acid-base or neutralisation (1)
- (c) (i) any two from: brown fumes or vapour evolved / gas relights glowing splint / black solid formed (2)
 - (ii) $2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2(1)$ [3]

[Total: 11 max 10]

[5]

© UCLES 2010

www.XtremePapers.net

Paç	ge 3			_													•		Ś	-	abus	\$	F	Paper	r
				G	UE	AL	.EVE	- 1-	_ (UCI	ope	er/r	NOV	ame	ber 4	2011	J			97	<u>'01</u>			41	
6 (a)	(i) (Cu(s	s) – 2	2e⁻	$ \rightarrow$	· Cı	²⁺ (a	ıq)	а	allov	v ele	ect	rons	s on	RH	S (1)								
	(ii) E s		or Ag 's le	-	-								•	sitiv	e th	an -	+0.3	84V 1	for	Cu	²⁺ /Cι	ı, (1)		
(iii) E N		or Ni rea						gc	oes	intc	o so	oluti	on a	ıs N	i ²⁺ (a	id) ((1)	[Mar	'k (ii)	and	1 (iii)	to ma	ax 3]
(iv) (Cu ²⁺	(aq)) +	2e ⁻	\rightarrow	Cu	(s)	(1))															
	(v) E	E [⊕] fo	or Zr	ו ²⁺ /	′Zn i	is ne	egat	ive	/ =	= _	0.76	6V,	, so	Zn²⁺	⁺ is ı	not	easi	ily re	edu	lceo	d. (1))			
(vi) 1 [blue †] de					s b	ec	caus	se C	Cu ²	²⁺ (ac	ı) is	be	ing	rep	lace	d	by .	Zn ²⁺ ((aq)	or N	li ²⁺ (ao	q) or [7]
	amou amou															.087	7) m	iol (1	1)						
	no. o no. o																mo	l (1))						
	perce	entag	ige "	wa	steo	d" =	= 10	0 ×	< (7	7.46	31 –	- 7.	.087)/7.4	461	= {	5.01	(5.	0)%	% (a	iccep	ot 4.	98–5	.10) ((1) [4]
(c)	E ^e da	ata: I	Ni ²⁺ / Fe ²⁺	/Ni ⁺/F	= e =	-0. -0.	.25∖ .44∖	/ / (1)																
	Beca	use	the	Fe) po	tent	ial is	s m	or	e ne	ega	tive	e tha	an th	ne N	li po	ten	tial,	the	e irc	on wi	ll dis	solve	ə (1)	[2]
																							ſ	Total	: 13]
(a)	(i) S	SnO) ₂	(Can	be I	read	l int	to	equ	uatic	on	(1)												

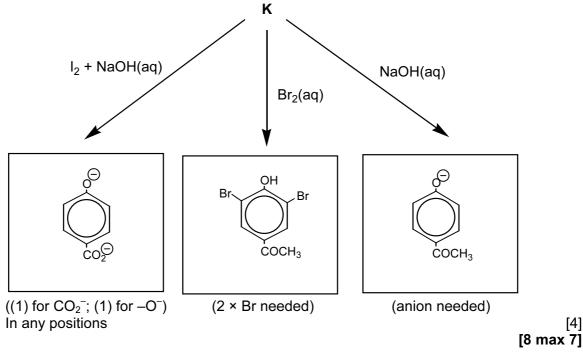
- 4 (a) (i) SnO₂ Can be read into equation (1) 2NaOH + SnO₂ \rightarrow Na₂SnO₃ + H₂O (1)
 - (ii) PbO Can be read into equation (1) PbO + 2HC $l \rightarrow$ PbC l_2 + H₂O (1)
 - (b) moles of oxygen = 9.3/16 = 0.581 molmoles of lead = 90.7/207 = 0.438 mol (both 3 s.f.) (1)so formula is Pb₃O₄ (1)
 - (c) (i) $K_{sp} = [Pb^{2^+}][Cl^-]^2(1)$ units = mol³ dm⁻⁹(1)
 - (ii) if $[Pb^{2^+}] = x$, $K_{sp} = 4x^3$, so $x = {}^3\sqrt{\{K_{sp}/4\}}$ $[Pb^{2^+}] = {}^3\sqrt{\{2 \times 10^{-5}/4\}} = 1.71 \times 10^{-2} \text{ mol dm}^{-3} (1)$
 - (iii) $[Pb^{2+}] = 2 \times 10^{-5} / (0.5)^2 = 8.0 \times 10^{-5} \text{ mol dm}^{-3} (1)$
 - (iv) common ion effect, or increased $[Cl^{-}]$ forces solubility equilibrium over to the left (1)

[Max 4]

[4]

[2]

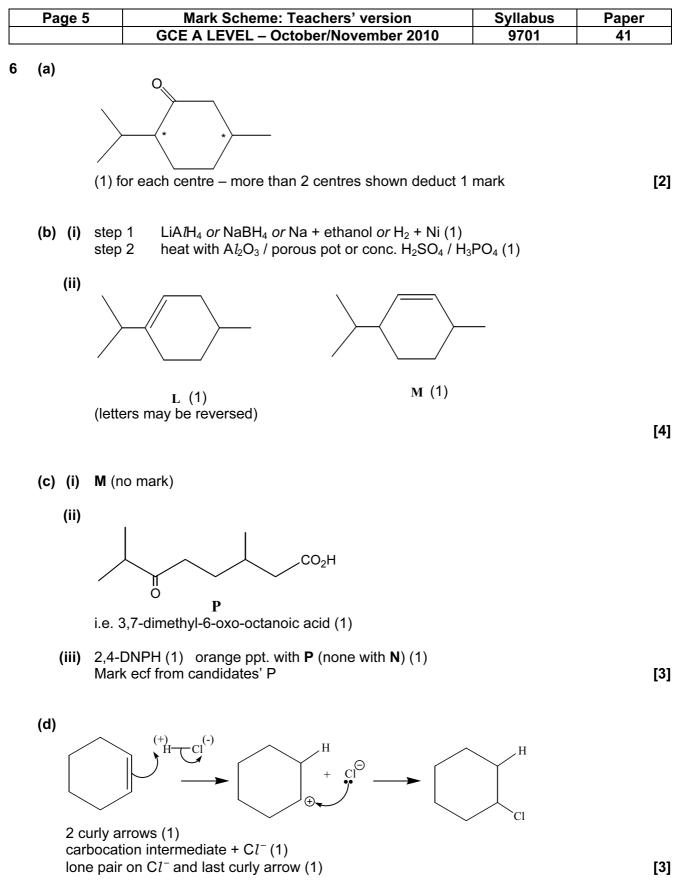
[Total: 10]


© UCLES 2010

www.XtremePapers.net

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2010	9701	41

- **5 (a) (i)** ester (1)
 - (ii) H is nitrobenzene structure needed here (1)J is phenyldiazonium chloride structure needed here (1)
 - (iii) step 2 Sn/Zn + HC l/H_2 + named cat / NaBH₄ / LiA lH_4 / Na + ethanol (1) step 3 HNO₂/NaNO₂ + HCl at T = 10°C or less (1) step 4 heat/warm to T > 10°C (1) step 5 CH₃COCl/ CH₃COCOCOCH₃ (1)
 - (b) (i) compounds that have the same molecular formula, but different structures (1)
 - (ii) phenol (NOT hydroxy) (1) (methyl) ketone *or* carbonyl (1)
 - (iii) K is 4-ethanoylphenol, $HO-C_6H_4$ -COCH₃ (must be 1,4- disubstituted isomer) (1)



[Total: 14]

[7]

© UCLES 2010 www.XtremePapers.net

[Total: 12]

	Page 6	6	Mark Scheme: Teachers' version GCE A LEVEL – October/November 2010	Syllabus 9701	Paper 41
7	(a) (i)	Disu	Ilfide bond / group / bridge (1)	5701	71
•	(u) (i) (ii)		tertiary structure (1)		
	(iii)	The	substrate will no longer bond to / fit into the active site hape of active site is changed	(1)	[3]
	(b) (i)	Acid	l-base / proton donor / neutralisation / salt formation (1)	
	(ii)	The	ability of the $-CO_2H$ group to form hydrogen bonds (1)) and ionic intera	ctions (1)
		The	$-CO_2H/-CO_2^-$ group is no longer able to interact with -	$-NH_2/-NH_3^+(1)$	
		The	Ag ⁺ forms a strong bond with $-COO^-(1)$		[5] max [4]
	(c) (i)	8 bu	t allow $4O_2$ if specified as molecules (1)		
	(ii)	Dati	ve / co-ordinate (1)		
	(iii)	Octa	ahedral / 6 co-ordinate (1)		[3]
					[Total: 10]
	Ele	ctron: <-ray 1 – ı The Alco	crystallography, X-rays are diffracted (by regions of hig no mark spectrum of alcohol / Y contains different peaks shol / Y contains different chemical environments	gh electron dens	ty) (1) [4]
	(ii)	-	ctrum 2 contains only one peak (1) ctrum 2 only shows 1 peak so Z must be a ketone (1)		
	(11)	•	ce Y must be a 2° alcohol (1)		
			hber of carbon atoms present $=\frac{0.6 \times 100}{17.6 \times 1.1} = 3$ (1)		
		Thu	s Z must be CH ₃ COCH ₃ (1)		
		Hen	ce Y must be propan-2-ol, $CH_3CH(OH)CH_3(1)$		
	(iii)	Y is	$ \begin{array}{c} H\\ H\\ CH_3 - C - CH_3\\ H\\ OH \end{array} $ (1)		
	(iv)		of the protons in Z are in the same chemical environme	nt (1)	[8] max [7]
					[Total: 11]

© UCLES 2010 www.XtremePapers.net

GCE A LEVEL - October/November 2010 9701 41	Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – October/November 2010	9701	41

- **9** (a) (i) A few nanometres (accept 0.5–10 nm) (1)
 - (ii) Graphite/graphene (1)
 - (iii) van der Waals' (1)
 Carbon atoms in the nanotubes are joined by covalent bonds (1)
 (as are the hydrogen atoms in a hydrogen molecule)
 or no dipoles on C or H₂ or the substances are non-polar
 [4]
 - (b) More hydrogen can be packed into the same space/volume (1) [1]
 - (c) If a system at equilibrium is disturbed, the equilibrium moves in the direction which tends to reduce the disturbance (owtte) (1)

When H_2 is removed the pressure drops and more H_2 is released from that adsorbed (1)

The equilibrium $H_{2adsorbed} \rightleftharpoons H_{2gaseous}(1)$

Equilibrium shifts to the right as pressure drops (1)

[4]

[Total: 9]