MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/42

Paper 42 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	2	Mark Scheme: Teachers' version	Syllabus	Paper						
			GCE A/AS LEVEL – October/November 2009	9701	42						
1	(a) Sui bot but or l (du	 a) Sulfates become less soluble down the group both lattice energy and hydration (are involved) but hydration energy decreases more than lattice energy or HE becomes less than LE or HE decreases whereas LE is almost constant (due to cationic radius increasing) 									
	(b) (i)	n(C0	D) = $pV/RT = 1.01 \times 10^5 \times 140 \times 10^{-3}/(8.31 \times 450) = 3$	3.78							
		or	= 140 × (273/450) / 22.4 = 3.79								
		allov	v= 140 × (298/450) / 24.0 = 3.86		[1]						
	(ii)	n(Ba If R1	aSO ₄) = n(CO)/4 = 0.945 moles (<i>or</i> 0.9475) IP used answer is 0.966		[1]						
	(iii)	M _r =	$M_r = 233$, so 0.945 mol = 0.945 × 233 = 220g \Rightarrow 100 × 220/250 = 88(.07)% or 0.9475 mol \Rightarrow 220.8g \Rightarrow 88(.3)%) f RTP used answer is 90(0)%								
		(<i>or</i> 0									
					[4]						
	(c) (i)	from	u data booklet, 1 st IE = 502; 2 nd IE = 966; sum = 1468 k -460 = 1468 + 180 + 279 – 200 + 640 + I E	J mol ⁻¹							
		–460 LE (–1	$ = 2367 + LE = -2827 kJ mol^{-1} for each error) $		[3]						

(ii) LE of BaS should be smaller than that of BaO, since S^{2-} is bigger than O^{2-} . [1] **[4]**

[Total: 11]

© UCLES 2009

	Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2009	9701	42	
2	(a) ethylami	ne > NH_3 , but phenylamine < NH_3		[1]	
	in ethyla	mine, the alkyl group donates electrons to the N, maki	ng lone pair moi	re available [1]	
	in pheny	lamine, the lone pair is delocalised over the ring, so is	less available	[1] [3]	

(b)

halide	observation when AgNO₃(aq) is added	observation when dilute NH₃(aq) is added	observation when concentrated NH₃(aq) is added	
chloride	white ppt	dissolves	dissolves	[1
bromide	cream ppt	no reaction / slightly dissolves	dissolves	[1
iodide	(pale) yellow ppt	no reaction	no reaction	[1

[3]

(c) ((i) [$[Aq^{+}(aq)] =$	$\sqrt{K_{sp}} =$	$\sqrt{(5 \times 10^{-13})}$	= 7.1 (7.07	') × 10 ⁻⁷ mol dm ⁻³	[1]
-------	-------	------------------	-------------------	------------------------------	-------------	--	-----

(ii) AgBr will be less soluble in KBr, due to common ion effect or equilibrium is shifted to the left / or by Le Chatelier's principle [1]
 [2]

(d) (i)
$$K_c = [Ag(RNH_2)_2^+]/[Ag^+][RNH_2]^2$$
 [1]
units are mol⁻² dm⁶ [1]

(ii) assume that most of the Ag⁺(aq) has gone to the complex, then $[Ag^+(aq)] = 7.1 \times 10^{-7}$ $[Ag(NH_3)_2^+] = 0.1$

and
$$[NH_3] = \sqrt{\{[Ag(NH_3)_2^+]/(K_c[Ag^+])\}} = \sqrt{\{0.1/(1.7 \times 10^7 \times 7.1 \times 10^{-7})\}}$$
 [1]
= **0.091** mol dm⁻³ [1]

(iii) When $R = C_2H_5$, K_c is likely to be greater, since the ethyl group will cause the lone pair on N to be more available / nucleophilic / increases basicity [1]

[5]

[Total: 13]

© UCLES 2009

Page 4			Mark Schen	Syllabus	Paper			
			GC	E A/AS LEVEL	– October/Nov	vember 2009	9701	42
3	(a)	Any two	from:	high(-ish) dens variable oxidat ability to form of formation of co incomplete d s high m.p. / b.p	sity of metal tion states complexes bloured compou subshell	nds		[1] + [1] [2]
	(b)	equ: Mn	O₄ [−] +	8H ⁺ + 5Fe ²⁺ -	\longrightarrow Mn ²⁺ +	5Fe ³⁺ + 4H ₂ O		[1]
		method:	Take Add a Titrat End	a known volum an excess of (di e until end poin point is first per	ne of Fe ²⁺ (aq)/in il) H ₂ SO ₄ it is reached and manent pink col	a pipette and pla d note volume us our	ace in (conical) f sed	lask
			Repe	eat titration & ta	ke average of co	onsistent reading	js any 3	points [3] [4]
	(c)	(i) 2 Mr	1O ₄ - +	5 SO ₂ + 2 H ₂	$_{2}$ O \rightarrow 2 Mn ²⁺ +	• 5 SO ₄ ²⁻ + 4 H	+	[2]
oxida	ation n	umbers:	+7	+4	+2	+6		[1]
		(ii) 1 Cr	207^{2-}	+ 6 NO ₂ + 2 ⊢	$d^* \rightarrow 2 \operatorname{Cr}^{3*} +$	6 NO ₃ ⁻ + 1 H ₂ C)	[2]
oxida	ation n	umbers:	+6	+4	+3	+5		[1]
		([2]	marks	for each equation	on: [1] for balaı [1] for total	ncing of redox sp balancing: i.e. H	pecies, ₂O and H⁺)	[6]
	(d)	Fe ³⁺ is a Fe ³⁺ oxic Fe ²⁺ redu <i>or</i> equati	homoo lised l⁻ uces S ions sh	geneous (cataly (and is reduce ₂ O ₈ ^{2–} (and is ox lowing this	vst) d to Fe ²⁺) idised to Fe ³⁺)		any two poi	nts [2] [2]

[Total: 14]

© UCLES 2009

	Page 5			Mark Scheme: 1	Syllabus	Paper		
			G	CE A/AS LEVEL – O	ctober/November	2009	9701	42
4	(a)	The ener 1 mol		[1] [1] [2]				
	(b)	HCI: noti purple is H-X bond	ning h iodir d ene	appens AND HI: pu ne formed (<i>or</i> in an eo rgy becomes smaller	rple fumes (at a lov quation: 2HI /weaker down the g	w temper → H ₂ + I ₂) group	ature)	[1] [1] [1] [3]
	(c)	data nee	ded:	F-F = 158 CI-CI = 244 6 E(C E(CI-F	l-F) –328 = 3×15 [−]) = +174 (kJ mol [−]	8 + 244 -1)		[2] [2]
								[Total: 7]
5	(a)							
		compou	und	all carbon atoms can be coplanar	not all carbon atoms coplanar			
		А		\checkmark				
		В			\checkmark			
		С		\checkmark				
		D		\checkmark				
		Е		\checkmark				

- [3]
- all 5 correct (4 correct: [2], 3 correct: [1]. <3 correct: [0])
 - [3]

(b)	rea rea	ction I: ction II:	Cl ₂ · Cl ₂ ·	+ AICl ₃ / FeCl ₃ / Fe / or bromides of Al or Fe + heat / light / uv / hf	[1] [1] [2]
(c)	(i)	H is C ₆ H	l₅CH	₂ Cl	[1]
	(ii)	reaction reaction reaction	III: V: VI:	$KMnO_4$ + heat (+ OH^-) NaOH in water + heat conc H_2SO_4 + heat	[1] [1] [1]
	(iii)	reaction reaction	III: V:	oxidation hydrolysis <i>or</i> nucleophilic substitution	[1] [1] [6]
					[Total: 11]

	Pa	ge 6	Mark Scheme: Teachers' version S	/llabus	Paper
			GCE A/AS LEVEL – October/November 2009	9701	42
6	(a)	L is CH M is CH N is CH Q is CH P is CH J is CH K is CH	${}_{3}CH_{2}Br$ ${}_{3}CO_{2}H$ ${}_{3}CH_{2}NH_{2}$ ${}_{3}CH_{2}CO_{2}H$ ${}_{3}CH_{2}CH_{2}NH_{2}$ ${}_{3}CH_{2}CONHCH_{2}CH_{3}$ ${}_{3}CONHCH_{2}CH_{2}CH_{3}$		[7] [7]
	(h)	reaction	I KCN heat NOT H ⁺ OR HCN ag negates		[1]
	(8)	reaction	II: SOCl ₂ or PCl ₅ or PCl ₃ BUT aq negates IV: H_2 + Ni or LiAlH ₄ or NaBH ₄ NOT Sn + HCl		[1] [1] [3]
	(c)	reaction reaction	IV: reduction VI: nucleophilic substitution <i>or</i> condensation reaction		[1] [1] [2]
	(d)	(i) amio	le		[1]
	()	(ii) amir	e		[1]
		()			[2]
					[Total: 14]
7	(a)	Primary:	Covalent bond (ignore amide, peptide etc.) Diagram showing peptide bond: (-CHR-)CONH(-CHR	-)	[1] [1]
		Seconda	ry: Hydrogen bonds (NOT between side chains" Diagram showing N-H···O=C		[1] [1]
		Tertiary:	 Two of the following: hydrogen bonds (diagram must show H-bonds <i>o</i> or β-pleated sheet – e.g. ser-ser) electrostatic/ionic attraction, Van der Waals'/hydrophobic forces/bonds, 	<i>ther</i> than t	hose in α-helix
			(covalent) disulphide (links/bridges)		[1] + [1]
			Suitable diagram of one of the above (for disulphide: S-S not S=S or SH-SH)		[1]
					[max 6]
	(b)	Substrat	e binds to the active site of the enzyme		[1]
		interaction Or chang	on with site causes a specific bond to be weakened, (which je in shape weakens bond(s) / lowers activation energy	dreaks)	[1]
					[2]
	(c)	Non-com Rate nev	petitive inhibition er reaches V_{max}		[1] [1] [2]
					[Total: 10]

	Pag	je 7		Mark Scheme: Teachers' version							Syllabus	Pape	Paper	
				GCE	A/AS L	EVEL	L – Octob	er/Nov	ember 2009		9701	42		
8	(a)	Rat	Ratio of the concentrations of a solute / distribution of solute [1] in two immiscible liquids										[1] [2]	
	(b)	K _c :	= <u>[pe</u> [p	esticide ir besticide i	n hexano in water	<u>ə]</u> he]	ence 8.0 =	= <u>[</u> 0.00	pesticide in h 50 - [pesticide	exar e in h	ne] exane]		[1]	
		The Her	ereforence x	e [pestici = 0.0044	de in he (g)	exane	e] x = 0.04	40 – 8 <i>x</i>					[1] [2]	
	(c)	(i)	Ratio	o would b	be 3 : 1								[1]	
		(ii)	Each Only Ratio	n chlorine way of g o of peak	e at coul jetting N s M M 9	ld be /I+4 is 1+2 6	³⁵ C/ or ³⁷ C s for both M+4 1	C/ chlorine	es to be ³⁷ C/ ((1 in	9 chance)		[1] [1] [3]	
													r.1	
	(d)	(i)	Acce	ept dioxin	s and fu	urans	s (without s	specifyi	ng)				[1]	
		(ii)	PCB	s (but do	n't pena	alise i	non-speci	fied dio	xins and fura	ins)			[1]	
	(i	iii)	Allov mill o	w : polluti closed do	on cont wn (ow	rol / e tte)	environme	ntal leg	islation / rem	noval	of dioxins and	l furans /	[1]	
	(i	iv)	Five										[1] [4]	
												[Total	: 111	

Page 8			8		Syllabu	Syllabus		r					
GCE A/AS LEVEL – October/November 2009 9701											42		
9	(a)	Lei	ngth o 3	of DNA	nanos	sphere di 1	iameter	cell	diameter 2	,			
		Bot	th ma	rks for co	rrect sequ	uence, [1]] for cell s	smaller	than DNA				[2]
	(b)	(i)	Gap	s in struc	ture of sh	aft much	smaller,	hence l	ess prone	to fracture	/ mor	e flexible	[1]
		(ii)	Com	nposites a	and carbo	n nanotu	bes less	dense ti	nan metal	(of compar	ables	strength)	[1] [2]
	(c)	Wa Ga	ivelen ps be	gth of inf tween na	rared ene no-sized	ergy is lon particles	nger than allow ligh	that of I It to pas	ight s through	, but reflect	infrar	ed energy	[1] / [1] [2]
	(d)	(i)	Res	istance to	corrosio	n / reactio	on						[1]
		(ii)	Abili	ty to kill b	oacteria / I	prevent b	oacteria n	nultiplyir	ıg				[1]
		(iii)	Very	/ much la	rger surfa	ace area r	means th	ey disso	olve more	readily			[1] [3]
												[Tota	al: 9]