UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 21 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	21

1 (a) same proton number/atomic number different mass number/nucleon number

(1) (1) [2]

(b)
$$A_r = \frac{(24 \times 78.60) + (25 \times 10.11) + (26 \times 11.29)}{100}$$

(1)

$$=\frac{1886.4+252.75+293.54}{100}=\frac{2432.69}{100}$$

which gives $A_r = 24.33$ penalise (-1) for misuse of significant figures

(1) [2]

(c)

isotopes		number o	f
	protons	neutrons	electrons
²²⁶ Ra	88	138	88
²³⁸ U	92	146	92

allow **one mark** for each correct column if there are no correct columns, allow **maximum one mark** for a correct row

 (3×1)

(d) (i) Ra²⁺

[3]

(1)

(1)

ionisation energies decrease down the Group

- or must be less than IE for Ba \rightarrow Ba²⁺
- **or** size of atom increases down Group/ electrons are further away from nucleus

or there is increased shielding down Group

(1)

allow ecf on answer to (i)

[3]

[Total: 10]

		J		GCE A/AS LEVEL – October/November 2009	9701	21	
2	(a)	(i)		uration ends in s ² e are two electrons in outermost/valence shell		(1)	
		(ii)	RaCO ₃	/radium carbonate		(1)	[2]
	(b)	and	ode node	$Br^- \rightarrow \frac{1}{2}Br_2 + e^-$ $Ra^{2^+} + 2e^- \rightarrow Ra$		(1) (1)	[2]
	(c)	(i)	water	slow reaction gas bubbles gas is colourless		any 2 (2)	
			steam	Mg glows vigorous reaction white solid formed		any 2 (2)	
		(ii)	Mg + F	$H_2O \rightarrow MgO + H_2$		(1)	[5]
	(d)	(i)	Ra(s) +	$+2H_2O(I) \rightarrow Ra(OH)_2(aq) + H_2(g)$		eqn. (1) s.s. (1)	
		(ii)	gas eve	colourless		0 (0)	
			heat ev	/olved		any 2 (2)	
		(iii)	10–14			(1)	
		(iv)	or elector or IE is	no mark for this alone se reactivity of metals increases down the Group strons are further from nucleus s lower s a stronger reducing agent		(1)	[6]
				0 0		` /	

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

[Total: 15]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	21

3 (a) (i)
$$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$$

 $\Delta H_f^{\circ} -75 \quad 0 \quad -82 \quad -92$

$$\Delta H^{\circ}_{\text{reaction}} = -82 + (-92) - (-75)$$

= -99 kJ mol⁻¹ (1)

(1)

(ii)
$$CH_4 + I_2 \rightarrow CH_3I + HI$$
 broken $C-H$ $I-I$ made $C-I$ $H-I$ 410 151 240 299 (1)

$$\Delta H^{\circ}_{\text{reaction}} = -240 + (-299) + 410 + 151$$

= $+22 \text{ kJ mol}^{-1}$ (1)

(b) (i) initiation (1)
$$Cl_2 + uvl \rightarrow 2Cl$$
 (1) propagation (1)

$$CH_4 + Cl \rightarrow CH_3 + HCl$$

 $CH_3 + Cl_2 \rightarrow CH_3Cl + Cl$ both needed (1)

$$CH_3 + CH_3 \rightarrow C_2H_6$$
 or $CH_3 + Cl \rightarrow CH_3Cl$ or

$$Cl + Cl \rightarrow Cl_2$$
 (1)

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	21

[Total: max 16]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	21

4 (a) (i) C_2H_5O

(1)

(ii) OH

(1)

(iii)

compound	type of isomerism	
Α	cis-trans or geometrical	
D	optical	

allow one mark if **both A and D** are correctly identified but in **both** cases, the type of isomerism is incorrect

(1+1) [4]

(b) (i) dehydration/elimination (1)

(ii) conc. $H_2SO_4/P_4O_{10}/Al_2O_3/pumice$ etc. (1)

(iii) CH₂=CHCH=CH₂/butadiene/buta-1,3-diene (1) [3]

(c) (i) $CH_3CH_2CH(OH)CH_3$ (1)

(ii) steam with H_3PO_4 catalyst **or** conc. H_2SO_4 then water (1 + 1)

(iii) $Cr_2O_7^{2-}/H^+$ (1) [4]

(d) functional group isomerism
or structural isomerism
not positional isomerism
(1) [1]

[Total: 12]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	21

5 (a) G is HCHO/methanal

(1) [1]

(b) (i) carboxylic acid/carboxyl/–CO₂H **not** acid

(1)

(ii) H is CH₃CO₂H/ethanoic acid

(1)

(iii) J is CH₃CH(OH)CO₂H/2-hydroxypropanoic acid allow HOCH₂CH₂CO₂H/3-hydroxypropanoic acid

(1) [3]

(c) K is CH₃COCO₂H

(1) [1]

(d) (i) L is

allow as ecf on HOCH2CH2CO2H/3-hydroxypropanoic acid

$$CH_{2}-CH_{2}$$
 $C=C$
 $C=C$
 $CH_{2}-CH_{2}$

(1)

(ii) esterification allow elimination/dehydration/condensation

(1) [2]

[Total: 7]