

Candidate Number

Chemistry

Assessment Unit AS 1
assessing
Basic Concepts in Physical and Inorganic Chemistry
[AC112]

TUESDAY 14 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all eighteen questions.
Answer all ten questions in Section A. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10. Keep in sequence when answering.
Answer all eight questions in Section B. You must answer the questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages.
Complete in blue or black ink only. Do not write with a gel pen.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.
Quality of written communication will be assessed in Question 12(a).
In Section A all questions carry equal marks, i.e. two marks for each question.
In Section B the figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A Periodic Table of Elements, containing some data, is included in this question paper.
10120

Section A

For each of the following questions only one of the lettered responses (A-D) is correct.
Select the correct response in each case and mark its code letter by connecting the dots as illustrated on the answer sheet.

1 Which one of the following shows how many electron pairs can be accommodated in the third energy level, $n=3$, of an atom?

A 3
B 6
C 9

D 18

2 Which one of the following molecules contains a total of six bonding electrons?
A $\mathrm{C}_{2} \mathrm{H}_{4}$
B CO_{2}
C NH_{3}
D SF_{6}

3 Which one of the following molecules is not polar?
A CHCl_{3}
B $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
C CO_{2}
D SO_{2}

4 An element X has the following ionisation energies:

	1st	2nd	3rd	4th	5th	6th
ionisation energy/ kJmol	738	1451	7733	10543	13630	18020

Which one of the following is the formula of the chloride of X ?
A XCI
B XCl_{2}
C XCl_{3}
D XCl_{4}

5 A salt gives a pink flame in a flame test when observed through cobalt glass.
A solution of the salt gives a cream precipitate when added to acidified silver nitrate solution. Which one of the following is the salt?

A Potassium bromide
B Potassium chloride
C Sodium bromide
D Sodium chloride

6 Which one of the following indicators is not suitable for the acid-base titration shown?

	$\mathbf{0 . 1} \mathbf{M}$ acid	$\mathbf{0 . 2 ~ M}$ base	indicator
A	ethanoic acid	ammonia solution	phenolphthalein
B	ethanoic acid	sodium hydroxide solution	phenolphthalein
C	hydrochloric acid	ammonia solution	methyl orange
D	hydrochloric acid	sodium hydroxide solution	methyl orange

[Turn over

7 Iron can be extracted from iron(III) oxide using carbon according to the following equation:

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

Which one of the following is the maximum mass of iron that can be extracted from a mixture of 150.0 tonnes of iron(III) oxide and 15.0 tonnes of carbon?

A 26.3 tonnes
B 52.6 tonnes
C 93.3 tonnes
D 105.3 tonnes

8 The atomic emission spectrum of hydrogen for the visible region is shown below:

Which one of the labelled transitions is responsible for line X in the spectrum?

9 A sample of hydrated sodium sulfate contains 56%, by mass, of water. What is the formula of the hydrated sodium sulfate?

A $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
B $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
C $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
D $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$

10 A cup of coffee contains 500 mg of caffeine which has the chemical formula $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$. Which one of the following is the number of nitrogen atoms present in this amount of caffeine?

A $\quad 1.55 \times 10^{21}$
B $\quad 6.21 \times 10^{21}$
C 1.55×10^{24}
D $\quad 6.21 \times 10^{24}$

Section B

> Answer all eight questions in this section.

11 Complete the following table for the ions of three elements, A, B and C.

ion	atomic number	electronic structure of ion
A^{3+}	5	
$\mathrm{~B}^{-}$		$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$
C^{2-}	16	

12 The 2010 Nobel Prize for Physics was awarded for the discovery of a new material called graphene. It consists of a single layer of carbon atoms obtained from graphite.
(a) Describe the structure and bonding of graphite. Include an explanation why graphite can conduct electricity.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication

(b) Explain why graphene, like graphite, has a high melting point.
\qquad
\qquad

13 In 1937 the American scientists Taylor and Crist investigated the decomposition of gaseous hydrogen iodide. The hydrogen iodide was heated in a sealed quartz tube.

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

(a) Taylor and Crist were able to measure the progress of the decomposition by measuring colour intensity.
(i) State the colour of iodine gas.
\qquad
(ii) Suggest what would be observed if this experiment was to be repeated with samples of hydrogen chloride and hydrogen bromide.
\qquad
\qquad
(iii) Explain the difference in observations between hydrogen chloride and hydrogen bromide.
\qquad
\qquad
(b) Hydrogen iodide dissolves in water to form hydriodic acid which is a strong acid.
(i) Explain whether hydriodic acid is a stronger or weaker acid than hydrochloric acid.
\qquad
\qquad
(ii) Suggest an equation for the reaction between sodium carbonate and hydriodic acid.
\qquad
(c) The boiling points of the hydrogen halides at atmospheric pressure are shown below:

hydrogen halide	boiling point $/{ }^{\circ} \mathrm{C}$
HF	19.9
HCl	-85.0
HBr	-66.7
HI	-35.4

Explain why hydrogen iodide has a higher boiling point than hydrogen chloride.
\qquad
\qquad

14 The hydrogen atom contains one electron and is difficult to place in a particular group in the Periodic Table. It could be in either Group I or Group VII.
(a) Suggest reasons, with reference to electron structure, why hydrogen could be placed in Group I or Group VII.
(i) Group I \qquad
\qquad
(ii) Group VII \qquad
\qquad
(b) Hydrogen, like the halogens, exists as diatomic molecules. However, it is much less reactive because it has a stronger covalent bond than any of the halogens.
(i) State the trend in bond energy of the halogen molecules.
\qquad
\qquad
(ii) Suggest why hydrogen has a higher bond energy than any of the halogen molecules.
\qquad
(c) Hydrogen reacts with sodium to form sodium hydride. Ions are formed in a similar manner to sodium and chloride ions.
(i) Complete the following diagram to show how the ions are arranged in a sodium chloride lattice.

Sodium chloride
(ii) Draw a dot and cross diagram, using outer electrons only, to show the reaction between sodium and hydrogen atoms to form sodium hydride.
(iii) Sodium hydride is a powerful reducing agent and will react with water to form sodium hydroxide and hydrogen. Write an equation for this reaction.
\qquad
(iv) 0.44 g of sodium hydride is reacted with $75 \mathrm{~cm}^{3}$ of water.

Calculate the number of moles of sodium hydride.
\qquad

Calculate the number of moles of sodium hydroxide formed.
\qquad

Calculate the molarity of the sodium hydroxide solution.

15 Chlorine has many industrial uses, particularly as a bleaching agent. It is used to bleach wood pulp in paper manufacture and to remove ink from paper which is to be recycled.
(a) Chlorine has two stable isotopes ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ present in nature in the following proportions.

isotope	abundance
${ }^{35} \mathrm{Cl}$	75.78%
${ }^{37} \mathrm{Cl}$	24.22%

Calculate the relative atomic mass of chlorine to two decimal places.
\qquad
\qquad
\qquad
(b) Household bleach contains sodium chlorate(I) rather than molecular chlorine. Sodium chlorate(I) can be made by reacting sodium hydroxide with chlorine gas in a disproportionation reaction.
(i) Explain what is meant by a disproportionation reaction.
\qquad
\qquad
(ii) Write an equation for the reaction between chlorine and sodium hydroxide to form sodium chlorate(I) and state the conditions for the formation of sodium chlorate(I).
equation
conditions
(iii) Explain, in terms of bonding, why sodium chlorate(I) has a higher boiling point than chlorine.
\qquad
\qquad
(c) Chlorine can form a number of chlorine oxides. Complete the table below giving the oxidation number of chlorine in each chlorine oxide.

formula of chlorine oxide	oxidation number of chlorine
$\mathrm{Cl}_{2} \mathrm{O}$	
ClO_{2}	
$\mathrm{Cl}_{2} \mathrm{O}_{7}$	

16 Strontium carbonate is commonly used in fireworks and flares as it gives a red flame colour. It contains strontium ions which are isoelectronic with krypton atoms.
(a) (i) Suggest the formula and electronic configuration for the strontium ion.
\qquad
\qquad
(ii) Suggest the meaning of the term isoelectronic.
\qquad
\qquad
(b) The red light emitted by one mole of strontium ions has an energy of 171.09 kJ .
(i) Calculate the energy, in joules, emitted by one ion of strontium.
\qquad
\qquad
(ii) Calculate the frequency of this light.
\qquad
(iii) Explain, using electronic transitions, why strontium ions give a red colour in fireworks.
\qquad
\qquad
\qquad
(c) $60 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid was added to 2.56 g of a sample from the firework. The resultant solution was filtered and made up to $500 \mathrm{~cm}^{3}$ with deionised water. $25.0 \mathrm{~cm}^{3}$ of this solution was titrated against $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide. The following results were obtained:

	initial burette reading/cm	final burette reading $/ \mathbf{c m}^{3}$	titre/cm ${ }^{\mathbf{3}}$
rough	0.0	24.9	24.9
1st accurate	24.9	49.5	24.6
2nd accurate	0.0	24.5	24.5

The reactions which occur are:

$$
\begin{gathered}
\mathrm{SrCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{SrCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

(i) Calculate the total number of moles of hydrochloric acid added.
\qquad
(ii) Calculate the number of moles of sodium hydroxide reacted.
\qquad
(iii) How many moles of hydrochloric acid are there in $500 \mathrm{~cm}^{3}$ of the solution?
\qquad
(iv) Calculate the number of moles of hydrochloric acid that reacted with the strontium carbonate.
\qquad
[Turn over
(v) Calculate the mass of strontium carbonate in the sample.
\qquad
(vi) Calculate the percentage by mass of strontium carbonate in the sample.
\qquad

17 A typical "lithium ion battery" consists of a lithium cobalt oxide $\left(\mathrm{LiCoO}_{2}\right)$ electrode and a graphite electrode separated by lithium fluorophosphate $\left(\operatorname{LiPF}_{6}\right)$.
(a) (i) The dot and cross diagram for the fluorophosphate ion is shown below. State the octet rule and explain whether or not the atoms in the ion obey this rule.

\qquad
\qquad
\qquad
\qquad
(ii) Draw and name the shape of the $\mathrm{PF}_{6}{ }^{-}$ion.
(iii) Explain why $\mathrm{PF}_{6}{ }^{-}$has the shape selected.
\qquad
\qquad
(b) Redox reactions will occur in a working battery.
(i) Define a redox reaction.
\qquad
(ii) What is the oxidation state of cobalt in LiCoO_{2} ?
\qquad
(iii) The lead-acid battery, common in many motor vehicles, relies on the following redox processes.

Balance the half-equations shown below.

$$
\begin{aligned}
& \mathrm{PbO}_{2}+\mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~Pb}+\mathrm{HSO}_{4}^{-} \rightarrow \mathrm{PbSO}_{4}+\mathrm{H}^{+}
\end{aligned}
$$

(iv) Combine the half-equations into an equation showing the overall reaction.
\qquad

18 Electronic cigarettes have been developed as an alternative to tobacco smoking. They are controversial as some studies have suggested that they release very small amounts of metal ions, such as silver, into the air.
(a) Suggest how the vapour produced by an electronic cigarette could be tested for silver ions. Indicate the result that would be expected if silver ions were present.
\qquad
\qquad
(b) Silver ions can be used to sterilise water, 0.001 g of silver ions being required for $1000 \mathrm{dm}^{3}$ of water.
(i) What is the concentration of silver ions in $\mathrm{mol} \mathrm{dm}^{-3}$?
\qquad
\qquad
(ii) What mass of silver ions is required to sterilise an Olympic sized swimming pool which contains $2.5 \times 10^{6} \mathrm{dm}^{3}$ of water?
\qquad
\qquad
(c) Silver has also been used to dispose of chemical weapons such as mustard gas $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{SCl}_{2}\right)$, which will react with silver(II) ions. The silver(II) ion is a powerful oxidising agent.
(i) Write the formula of a silver(II) ion.
\qquad
(ii) An alternative method of disposing of mustard gas is through reaction with sodium hydroxide, which produces $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~S}(\mathrm{OH})_{2}$ and sodium chloride. Write an equation for this reaction.
\qquad

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
Section A	
$1-10$	
Section B	
11	
12	
13	
14	
15	
16	
17	
18	

Total
Marks

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

208717

Rewarding Learning

Periodic Table of the Elements

For the use of candidates taking
Advanced Subsidiary and Advanced Level
Chemistry Examinations

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

Rewarding Learning
 \title{
gce A/AS examinations
 \title{
gce A/AS examinations

 chemistry

 chemistry (advanced)
} (advanced)
}

