

Candidate Number

Chemistry

Assessment Unit A2 2
 assessing
 Analytical, Transition Metals, Electrochemistry and Further Organic Chemistry

[AC222] *AC222*

FRIDAY 10 JUNE, AFTERNOON

TIME

2 hours.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all seventeen questions.
Answer all ten questions in Section A. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10. Keep in sequence when answering.
Answer all seven questions in Section B. Write your answers in the spaces provided in this question paper.
Do not write outside the boxed area on each page or on blank pages.
Complete in blue or black ink only. Do not write with a gel pen.

INFORMATION FOR CANDIDATES

The total mark for this paper is 120.
Quality of written communication will be assessed in Question 16(b)(ii).
In Section A all questions carry equal marks, i.e. two marks for each question.
In Section B the figures printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A Periodic Table of the Elements, containing some data, is included in this question paper.
10136

Section A

For each of the following questions only one of the lettered responses (A-D) is correct.
Select the correct response in each case and mark its code letter by connecting the dots as illustrated on the answer sheet.

1 Which one of the following shows alanine in the solid state?
A $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$
B $\mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}$
C $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$
D $\mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-}$

2 Which one of the following is used to prevent the clotting of blood?
A Cisplatin
B Edta
C Iron(II)
D Iron(III)

3 Which one of the following factors determines the chemical shift in nuclear magnetic resonance spectroscopy?

A The chemical environment of hydrogen atoms
B The fragmentation of hydrogen atoms from the molecule
C The number of chemically equivalent hydrogen atoms
D The ratio of hydrogen atoms

4 In terms of the d sub-shell electronic configurations of ions which one of the following is not a transition metal?

A Chromium
B Copper
C Manganese
D Zinc

5 Given the following standard electrode potentials:

$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ca}$	-2.87 V
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}$	-1.18 V
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}$	-0.76 V
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}$	-0.44 V
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$	+0.77 V
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	+1.51 V

which one of the following will reduce MnO_{4}^{-}to Mn^{2+} but not to Mn ?
A Ca
B Fe^{2+}
C Fe^{3+}
D Zn^{2+}

6 Which one of the following describes the appearance of methyl 3-nitrobenzoate?
A Colourless liquid
B Cream solid
C Orange solid
D Violet crystals

7 Which one of the following is the number of isomeric secondary amines that have a relative molecular mass of 73 ?

A 1

B 2
C 3

D 4

8 Which one of the following is produced from the alkaline hydrolysis of propanamide?
A Ammonia
B Ammonium chloride
C Propanoic acid
D Water

9 Which one of the following is a feature of HD polythene?
A It has high crystallinity
B It has a highly branched structure
C It is highly flexible
D It is produced at very high pressure

10 Which one of the following will be observed in the nuclear magnetic resonance spectrum of pentan-3-one?

A One doublet and one triplet
B One triplet and one quartet
C Two doublets and two triplets
D Two triplets and two quartets

Answer all seven questions in this section. 11 Complete the following table.				
		paper chromatography	thin-layer chromatography	gas-liquid chromatography
	mobile phase	solvent	solvent	
	stationary phase	water in paper		oil on solid support
	value recorded for analysis	retardation factor $\left(R_{f}\right)$		

12 Azo violet is a dye that can be formed from 4-nitrophenylamine via the 4-nitrobenzenediazonium ion.

(a) (i) Write the molecular formula for azo violet and calculate its relative molecular mass.
\qquad
\qquad
(ii) Calculate the mass of 4-nitrophenylamine $(\mathrm{RMM}=138)$ required to produce 30 g of azo violet assuming a 60\% yield.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) Circle the azo group on the structure.
(ii) Explain why azo violet is coloured.
\qquad
\qquad
\qquad
\qquad
(c) Draw the structure of the 4-nitrobenzenediazonium ion showing the bonds between the nitrogen atoms.
(d) State the names of the reagents and the reaction conditions for the formation of the 4-nitrobenzenediazonium ion from 4-nitrophenylamine.
\qquad
\qquad
\qquad
\qquad

13 The standard electrode potential of copper can be determined by connecting a standard hydrogen electrode to a standard copper half-cell.
(a) Complete the labelling of the diagram below.

(b) The reaction of Cu^{2+} ions with I^{-}ions produces insoluble copper(I) iodide.

$$
2 \mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cul}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{aq})
$$

What colour change will be observed in the solution during the reaction?
\qquad
(c) Copper is commonly used in alloys such as brass. The following method describes how a titration can be carried out to determine the approximate percentage of copper in a sample of brass.

- The copper in a 2.0 g sample of brass is oxidised to Cu^{2+} ions by reacting the brass with excess nitric acid.
- Sodium carbonate solution is added to the mixture which is then diluted to $250 \mathrm{~cm}^{3}$ in a volumetric flask.
- A $25.0 \mathrm{~cm}^{3}$ portion of this solution is transferred to a conical flask to which excess potassium iodide is added.
- The liberated iodine is titrated against $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate solution.
(i) Suggest the purpose of the sodium carbonate solution.
\qquad
(ii) Write an ionic equation for the reaction of thiosulfate ions with iodine.
\qquad
(iii) Name the indicator used for the titration and state at what point it is added to the titration mixture.
\qquad
(iv) What colour change takes place at the end point?
\qquad
(v) $23.8 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate solution are required to react with the liberated iodine produced from a $25.0 \mathrm{~cm}^{3}$ portion of the solution. Calculate the percentage of copper in the sample of brass.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

14 A reaction scheme for $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})$ is shown below.

(a) (i) State the colour of solid \mathbf{A}.
\qquad
(ii) State the formula of solid \mathbf{A}.
\qquad
(b) State the colour of solution \mathbf{B}.
\qquad
(c) (i) State the formula of the complex ion \mathbf{C}.
\qquad
(ii) What is the coordination number of chromium in \mathbf{C} ?
\qquad
(d) State the reagents required for process \mathbf{D}.
\qquad
\qquad
\qquad
(e) (i) Name the reducing agent and state the conditions used in process \mathbf{E}.
\qquad
\qquad
\qquad
(ii) Give the oxidation state of chromium before and after process \mathbf{E}.

15 (a) Nitrobenzene can be converted to 1,3-dinitrobenzene.

1,3-dinitrobenzene
(i) State the reagents required to convert nitrobenzene into 1,3-dinitrobenzene.
\qquad
\qquad
(ii) Name the nitrating species and write an equation for its formation.
\qquad
\qquad
(iii) Write a mechanism for the reaction of nitrobenzene to form 1,3-dinitrobenzene.
(iv) What is the name of the mechanism for the reaction?
\qquad
(b) The 1,3-dinitrobenzene can then be converted to 1,3-diaminobenzene.

1,3-diaminobenzene

(i) State the reagents required to convert 1,3-dinitrobenzene to 1,3-diaminobenzene.
\qquad
\qquad
(ii) Explain why 1,3-diaminobenzene and ethane-1,2-diamine can act as bases.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Explain why 1,3-diaminobenzene is a weaker base than ethane-1,2-diamine.
\qquad
\qquad
\qquad
(c) Kevlar is a biodegradable polyamide that can be formed from 1,4-diaminobenzene and benzene-1,4-dicarboxylic acid.

benzene-1,4-dicarboxylic acid
(i) Draw the repeating unit of Kevlar and circle the amide bond.
(ii) Give the structure of a reagent that could be used in place of benzene-1,4-dicarboxylic acid to make Kevlar.
(iii) Explain why Kevlar is biodegradable.
\qquad
\qquad
\qquad

16 Edta is a hexadentate ligand that reacts with a solution of copper(II) ions to produce a dark blue solution.
(a) Suggest the meaning of the term hexadentate.
\qquad
\qquad
\qquad
(b) A solution of copper(II) ions reacts with edta according to the following equation.

$$
\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{edta}^{4-} \rightarrow[\mathrm{Cu}(\mathrm{edta})]^{2-}+6 \mathrm{H}_{2} \mathrm{O}
$$

(i) Explain, in terms of entropy, why the reaction between $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and edta takes place.
\qquad
\qquad
\qquad
(ii) Describe how colorimetry can be used to prove that the ratio of copper(II) to edta in $\left[\mathrm{Cu}(\text { edta) }]^{2-}\right.$ is $1: 1$.
\qquad

Quality of written communication
(c) Copper is used to catalyse the decomposition of gaseous propanone to ethenone, $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}$, and methane.
(i) Write an equation for the decomposition of propanone to ethenone and methane.
\qquad
(ii) Explain and name the type of catalysis taking place.
\qquad
\qquad
\qquad
(iii) Explain how transition metals catalyse reactions by chemisorption.
\qquad
\qquad
\qquad
\qquad
\qquad

17 Acrylamide is a carcinogen that gets into the body via cigarette smoke and some types of fried food. It is highly soluble in water and can be produced by heating the product from the reaction of propenoic acid with ammonia.

(a) (i) Draw the structure of propenoic acid showing all the bonds present.
(ii) Suggest the formula of the ammonium salt.
\qquad
(iii) Suggest the name of the ammonium salt.
\qquad
(b) Acrylonitrile can be made from acrylamide.

(i) Give the formula of the reagent used to convert acrylamide to acrylonitrile.
\qquad
(ii) Name the type of reaction taking place.
\qquad
(iii) With reference to the nmr spectra of both acrylamide and acrylonitrile, explain how nmr could be used to confirm the conversion of acrylamide to acrylonitrile was complete.
\qquad
\qquad
\qquad
(c) Explain why acrylamide is soluble in water.
\qquad
\qquad
\qquad
\square
(d) (i) State the expected observations when acrylamide is added to bromine water.
\qquad
\qquad
(ii) Write the equation for this reaction.
\qquad
(e) Analysis of acrylamide levels is very important in the food industry. The mass spectrum of acrylamide is shown below.

(i) Give two terms which describe the peak at $\mathrm{m} / \mathrm{z} 71$.
\qquad
\qquad
(ii) Explain why there is a peak at $\mathrm{m} / \mathrm{z} 72$.
\qquad
(iii) Give the ion responsible for the peak at $\mathrm{m} / \mathrm{z} 44$.
\qquad
(f) Researchers suggest that the daily intake of acrylamide should not exceed
1.7×10^{-4} moles per kilogram of bodyweight. Calculate the mass of acrylamide, in milligrams, that should not be exceeded by an 80 kg man on a daily basis.
\qquad
\qquad
\qquad

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
Section A	
$1-10$	
Section B	
11	
12	
13	
14	
15	
16	
17	

Total

 Marks
Permission to reproduce all copyright material has been applied for.

In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

Rewarding Learning

Periodic Table of the Elements

For the use of candidates taking
Advanced Subsidiary and Advanced Level
Chemistry Examinations

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

Rewarding Learning
 \title{
gce A/AS examinations
 \title{
gce A/AS examinations

 chemistry

 chemistry (advanced)
} (advanced)
}

