

ADVANCED General Certificate of Education 2016

## Chemistry

Assessment Unit A2 2 assessing Analytical, Transition Metals, Electrochemistry and Further Organic Chemistry

[AC222] FRIDAY 10 JUNE, AFTERNOON **Centre Number** 

**Candidate Number** 

\*AC222\*

#### TIME

2 hours.

#### **INSTRUCTIONS TO CANDIDATES**

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer all seventeen questions.

Answer **all ten** questions in **Section A**. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10. Keep in sequence when answering.

Answer **all seven** questions in **Section B**. Write your answers in the spaces provided in this question paper.

**Do not write outside the boxed area on each page or on blank pages.** Complete in blue or black ink only. **Do not write with a gel pen.** 

#### INFORMATION FOR CANDIDATES

The total mark for this paper is 120.

Quality of written communication will be assessed in Question 16(b)(ii).

In Section A all questions carry equal marks, i.e. two marks for each question.

In Section B the figures printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A Periodic Table of the Elements, containing some data, is included in this question paper.

## 

\*28AC22201\*

#### Section A

For each of the following questions only **one** of the lettered responses (A–D) is correct.

Select the correct response in each case and mark its code letter by connecting the dots as illustrated on the answer sheet.

- 1 Which one of the following shows alanine in the solid state?
  - A H<sub>2</sub>NCH<sub>2</sub>COOH
  - B H<sub>3</sub>N<sup>+</sup>CH<sub>2</sub>COO<sup>-</sup>
  - C H<sub>2</sub>NCH(CH<sub>3</sub>)COOH
  - D H<sub>3</sub>N<sup>+</sup>CH(CH<sub>3</sub>)COO<sup>-</sup>
- 2 Which one of the following is used to prevent the clotting of blood?
  - A Cisplatin
  - B Edta
  - C Iron(II)
  - D Iron(III)
- **3** Which one of the following factors determines the chemical shift in nuclear magnetic resonance spectroscopy?
  - A The chemical environment of hydrogen atoms
  - B The fragmentation of hydrogen atoms from the molecule
  - C The number of chemically equivalent hydrogen atoms
  - D The ratio of hydrogen atoms

10136

## 

\*28AC22202\*

- 4 In terms of the d sub-shell electronic configurations of ions which one of the following is **not** a transition metal?
  - A Chromium
  - B Copper
  - C Manganese
  - D Zinc
- **5** Given the following standard electrode potentials:

| $Ca^{2+} + 2e^{-} \rightleftharpoons Ca$                   | –2.87 V |
|------------------------------------------------------------|---------|
| $Mn^{2+} + 2e^- \Longrightarrow Mn$                        | -1.18 V |
| $Zn^{2+} + 2e^{-} \rightleftharpoons Zn$                   | -0.76 V |
| $Fe^{2+} + 2e^- \rightleftharpoons Fe$                     | -0.44 V |
| $Fe^{3+} + e^- \rightleftharpoons Fe^{2+}$                 | +0.77 V |
| $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$ | +1.51 V |

which one of the following will reduce  $MnO_4^-$  to  $Mn^{2+}$  but not to Mn?

- A Ca
- B Fe<sup>2+</sup>
- C Fe<sup>3+</sup>
- D Zn<sup>2+</sup>

10136

[Turn over

## 

\*28AC22203\*

- 6 Which one of the following describes the appearance of methyl 3-nitrobenzoate?
  - A Colourless liquid
  - B Cream solid
  - C Orange solid
  - D Violet crystals
- 7 Which one of the following is the number of isomeric secondary amines that have a relative molecular mass of 73?
  - A 1
  - B 2
  - C 3
  - D 4
- 8 Which one of the following is produced from the alkaline hydrolysis of propanamide?
  - A Ammonia
  - B Ammonium chloride
  - C Propanoic acid
  - D Water

## 

\*28AC22204\*

- 9 Which one of the following is a feature of HD polythene?
  - A It has high crystallinity
  - B It has a highly branched structure
  - C It is highly flexible
  - D It is produced at very high pressure
- **10** Which one of the following will be observed in the nuclear magnetic resonance spectrum of pentan-3-one?
  - A One doublet and one triplet
  - B One triplet and one quartet
  - C Two doublets and two triplets
  - D Two triplets and two quartets

[Turn over

## 

\*28AC22205\*

#### Section B

Answer **all seven** questions in this section.

#### **11** Complete the following table.

|                                | paper<br>chromatography                 | thin-layer<br>chromatography | gas-liquid<br>chromatography |
|--------------------------------|-----------------------------------------|------------------------------|------------------------------|
| mobile phase                   | solvent                                 | solvent                      |                              |
| stationary<br>phase            | water in paper                          |                              | oil on solid support         |
| value recorded<br>for analysis | retardation factor<br>(R <sub>f</sub> ) |                              |                              |

[4]

10136

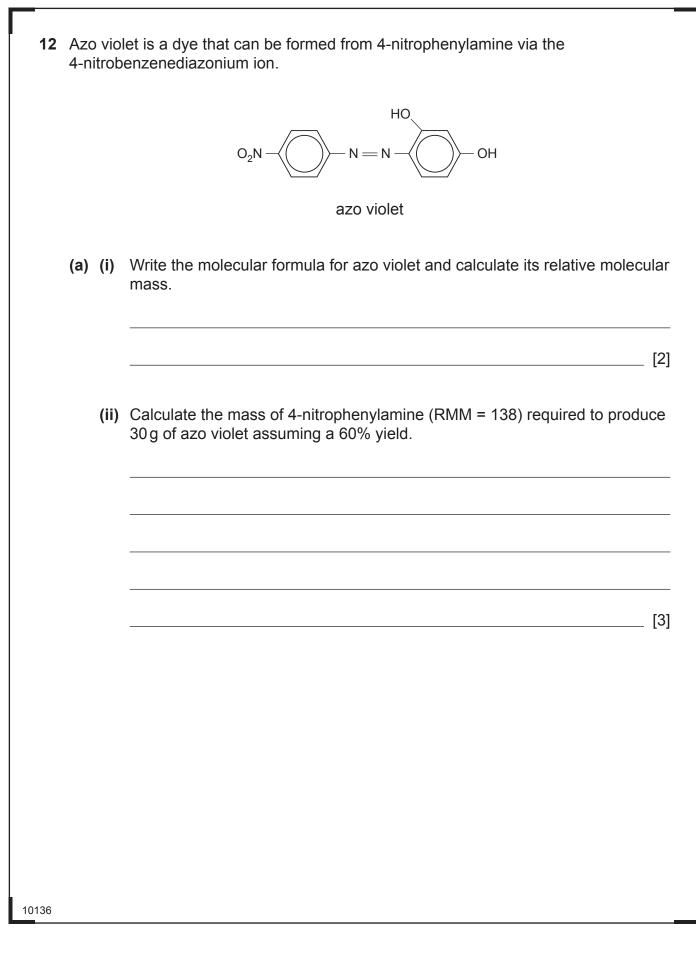
## 

\*28AC22206\*

## **BLANK PAGE**

#### DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)


10136

[Turn over

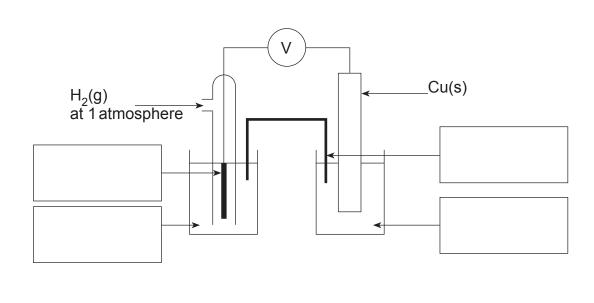
# 

\*28AC22207\*

Ð Œ Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ Ð Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ ÐÐ O: ÐÐ Œ Ð Œ Ð Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ ÐÐ O: ÐÐ Œ ÐÐ O: ÐÐ Œ ÐÐ Œ






\*28AC22208\*

| (b) | (i)         | Circle the azo group on the structure.                                                                                            | [1]     |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------|---------|
|     | (ii)        | Explain why azo violet is coloured.                                                                                               |         |
|     |             |                                                                                                                                   |         |
|     |             |                                                                                                                                   | _ [3]   |
| (c) |             | w the structure of the 4-nitrobenzenediazonium ion showing the bonds ween the nitrogen atoms.                                     | _ [J]   |
|     |             |                                                                                                                                   |         |
|     |             |                                                                                                                                   | [2]     |
| (d) | Stat<br>the | te the names of the reagents and the reaction conditions for the formatio<br>4-nitrobenzenediazonium ion from 4-nitrophenylamine. | n of    |
|     |             |                                                                                                                                   |         |
|     |             |                                                                                                                                   |         |
|     |             |                                                                                                                                   | _ [3]   |
|     |             |                                                                                                                                   |         |
|     |             |                                                                                                                                   |         |
|     |             | ſŦu                                                                                                                               | rn over |
|     |             |                                                                                                                                   |         |

# 

\*28AC22209\*

- **13** The standard electrode potential of copper can be determined by connecting a standard hydrogen electrode to a standard copper half-cell.
  - (a) Complete the labelling of the diagram below.



(b) The reaction of  $Cu^{2+}$  ions with  $I^-$  ions produces insoluble copper(I) iodide.

$$2Cu^{2+}(aq) + 4l^{-}(aq) \rightarrow 2Cul(s) + l_2(aq)$$

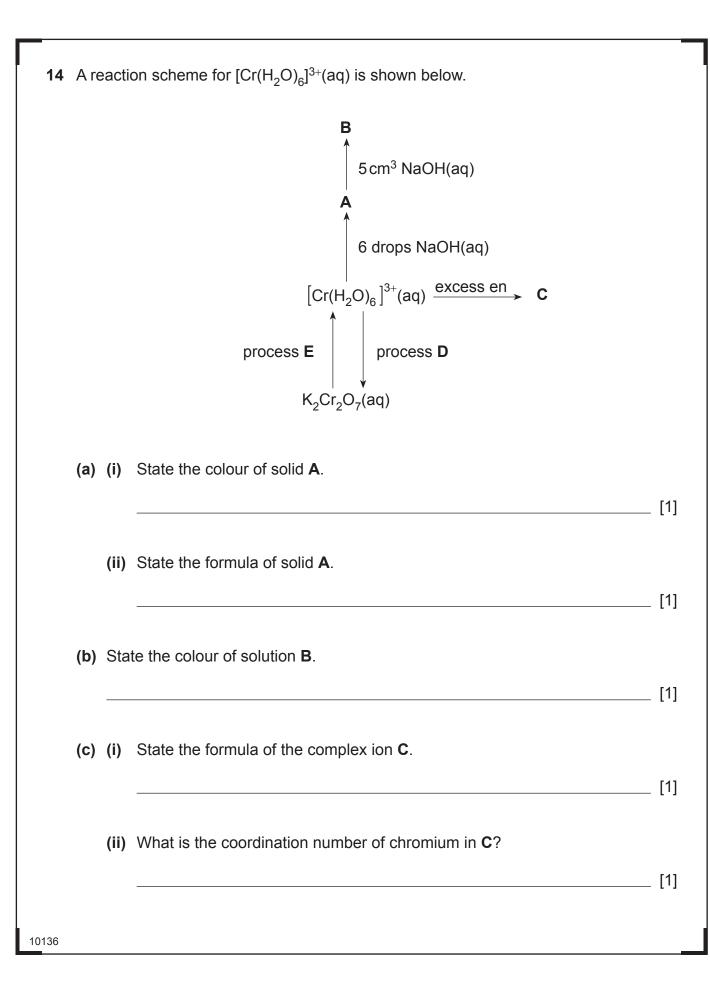
What colour change will be observed in the solution during the reaction?

[2]

[4]

- (c) Copper is commonly used in alloys such as brass. The following method describes how a titration can be carried out to determine the approximate percentage of copper in a sample of brass.
  - The copper in a 2.0g sample of brass is oxidised to Cu<sup>2+</sup> ions by reacting the brass with excess nitric acid.
  - Sodium carbonate solution is added to the mixture which is then diluted to 250 cm<sup>3</sup> in a volumetric flask.
  - A 25.0 cm<sup>3</sup> portion of this solution is transferred to a conical flask to which excess potassium iodide is added.
  - The liberated iodine is titrated against 0.1 mol dm<sup>-3</sup> sodium thiosulfate solution.

10136




\*28AC22210\*

| (i)   | Suggest the purpose of the sodium carbonate solution.                                                                                                                                                                                                 |      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|       |                                                                                                                                                                                                                                                       | [1]  |
| (ii)  | Write an ionic equation for the reaction of thiosulfate ions with iodine.                                                                                                                                                                             | [2]  |
| (iii) | Name the indicator used for the titration and state at what point it is added to the titration mixture.                                                                                                                                               | ł    |
|       |                                                                                                                                                                                                                                                       | [2]  |
| (iv)  | What colour change takes place at the end point?                                                                                                                                                                                                      |      |
|       |                                                                                                                                                                                                                                                       | [1]  |
| (v)   | 23.8 cm <sup>3</sup> of 0.1 mol dm <sup>-3</sup> sodium thiosulfate solution are required to react with the liberated iodine produced from a 25.0 cm <sup>3</sup> portion of the solution. Calculate the percentage of copper in the sample of brass. |      |
|       |                                                                                                                                                                                                                                                       |      |
|       |                                                                                                                                                                                                                                                       |      |
|       |                                                                                                                                                                                                                                                       |      |
|       |                                                                                                                                                                                                                                                       |      |
|       |                                                                                                                                                                                                                                                       |      |
|       |                                                                                                                                                                                                                                                       |      |
|       |                                                                                                                                                                                                                                                       | [4]  |
|       |                                                                                                                                                                                                                                                       |      |
|       | [Turn                                                                                                                                                                                                                                                 | over |
|       |                                                                                                                                                                                                                                                       |      |

# 

\*28AC22211\*



\*28AC22212\*

Œ

|     |      |                                                                             | _ [3 |
|-----|------|-----------------------------------------------------------------------------|------|
| (e) | (i)  | Name the reducing agent and state the conditions used in process <b>E</b> . |      |
|     |      |                                                                             | _ [3 |
|     | (ii) | Give the oxidation state of chromium before and after process <b>E</b> .    |      |
|     |      |                                                                             | _ [1 |
|     |      |                                                                             |      |
|     |      |                                                                             |      |
|     |      |                                                                             |      |

[Turn over

# 

\*28AC22213\*

| ng Learning                      |  |
|----------------------------------|--|
| O:                               |  |
| Rewardin                         |  |
| ÐÐ                               |  |
| ng Learning                      |  |
| ng Learning                      |  |
| Repartie                         |  |
|                                  |  |
| Ð                                |  |
| ng Learning<br>Coing<br>Rewardin |  |
| - Œ                              |  |
| Rewardin                         |  |
| Rewardin                         |  |
|                                  |  |
| Rewardin<br>200<br>200           |  |
| Rewardin                         |  |
| 20                               |  |
| z                                |  |
|                                  |  |
| Rewardin                         |  |
| Rewardin                         |  |
| Rewardin<br>DD<br>xg Learning    |  |
| ng Learning                      |  |
| xg Learning<br>CCC<br>Rewardin   |  |
| Rewardin                         |  |
| Ð                                |  |
| DD<br>xg Learning                |  |
|                                  |  |
| Rewardin                         |  |
| 200                              |  |
| DD<br>xg Learning                |  |
| ig Learning                      |  |
| Rewardin                         |  |
| Rewardin                         |  |
| Rewardin                         |  |
| ng Learning                      |  |
| sg Learning<br>CCC<br>Rewardin   |  |
| Repartie                         |  |
| 200                              |  |
| DD<br>xg Learning                |  |
|                                  |  |
| Rewardin                         |  |
| Rewardin                         |  |
| DD<br>20                         |  |
| ng Learning                      |  |
|                                  |  |
| Rewardin<br>200<br>200           |  |
| 200                              |  |
| 50                               |  |
| ng Learning                      |  |
| Rewardin                         |  |
| Rewardin                         |  |
| DD<br>xg Learning                |  |
| ng Learning                      |  |
| Rewardin                         |  |
| Rewardin                         |  |
| 20                               |  |
| DD<br>xg Learning                |  |
| ng Lournong                      |  |
| Rewardin                         |  |
| Rewardin                         |  |
| DD<br>xg Learning                |  |
| ng Learning                      |  |
|                                  |  |
| Rewardin                         |  |
| 20                               |  |
| DD<br>20 Learning                |  |
|                                  |  |
| Rewardin                         |  |
| Rewardin                         |  |
| DD                               |  |
|                                  |  |
| Rowardin                         |  |
| Rewardin                         |  |
| DD<br>20 Learning                |  |
| ng Learning                      |  |
|                                  |  |
| Rewardin                         |  |
|                                  |  |
| E                                |  |
| og counting                      |  |
| Rewardin                         |  |
| Rewardin                         |  |
| Ð                                |  |
|                                  |  |
| Rewardin                         |  |
| Rewarden                         |  |
| 30                               |  |
|                                  |  |
| ng Learning                      |  |
| <u>O</u>                         |  |
| Rewardin                         |  |
| Ð                                |  |
| ng Learning                      |  |
|                                  |  |
| Rewardin                         |  |
| Ð                                |  |
| Z                                |  |
| ig Learning                      |  |
|                                  |  |
| Œ                                |  |

ÐÐ

|    | 15  | (a) | Nitro | obenzene can be converted to 1,3-dinitrobenzene.                               |        |
|----|-----|-----|-------|--------------------------------------------------------------------------------|--------|
|    |     |     |       | NO <sub>2</sub><br>NO <sub>2</sub>                                             |        |
|    |     |     |       | 1,3-dinitrobenzene                                                             |        |
|    |     |     | (i)   | State the reagents required to convert nitrobenzene into 1,3-dinitroben        | izene. |
|    |     |     |       |                                                                                | [2]    |
|    |     |     | (ii)  | Name the nitrating species and write an equation for its formation.            |        |
|    |     |     |       |                                                                                | [2]    |
|    |     |     | (iii) | Write a mechanism for the reaction of nitrobenzene to form 1,3-dinitrobenzene. |        |
|    |     |     |       |                                                                                |        |
|    |     |     |       |                                                                                |        |
|    |     |     |       |                                                                                | [3]    |
|    |     |     | (iv)  | What is the name of the mechanism for the reaction?                            |        |
|    |     |     |       |                                                                                | [2]    |
| 10 | 136 |     |       |                                                                                |        |

# 

\*28AC22214\*

| (i)   | State the reagents required to convert 1,3-dinitrobenzene to             |
|-------|--------------------------------------------------------------------------|
|       | 1,3-diaminobenzene.                                                      |
|       | [2                                                                       |
| (11)  | Explain why 1,3-diaminobenzene and ethane-1,2-diamine can act as bases   |
|       | [2                                                                       |
| (iii) | Explain why 1,3-diaminobenzene is a weaker base than ethane-1,2-diamine. |

\*28AC22215\*

(c) Kevlar is a biodegradable polyamide that can be formed from 1,4-diaminobenzene and benzene-1,4-dicarboxylic acid. Ο  $\cap$ OH HO benzene-1,4-dicarboxylic acid (i) Draw the repeating unit of Kevlar and circle the amide bond. [2] (ii) Give the structure of a reagent that could be used in place of benzene-1,4-dicarboxylic acid to make Kevlar. [1] (iii) Explain why Kevlar is **biodegradable**. [2] 10136 

\*28AC22216\*

Œ ÐÐ Œ Ð Œ ÐÐ Œ ÐÐ Œ Ð Œ Œ Ð Œ )) Ng Lann Œ

y Learning Rowardin DDD y Learning

ÐÐ

Rewardin DD

Œ

DD 2g Leerning OC

ng Learning Q Rewardin Q

Personal Research Parameter Paramete

Rowardin DD

Œ

DD sg Learning Rewardin DD sg Learning

Ð

## **BLANK PAGE**

#### DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

10136

[Turn over

# 

\*28AC22217\*

| (a) | Su  | ggest the meaning of the term <b>hexadentate</b> .                                                       |     |
|-----|-----|----------------------------------------------------------------------------------------------------------|-----|
|     |     |                                                                                                          |     |
|     |     |                                                                                                          | [2] |
| (b) | As  | olution of copper(II) ions reacts with edta according to the following equation                          | n.  |
|     |     | $[Cu(H_2O)_6]^{2+} + edta^{4-} \rightarrow [Cu(edta)]^{2-} + 6H_2O$                                      |     |
|     | (i) | Explain, in terms of entropy, why the reaction between $[\rm Cu(\rm H_2O)_6]^{2+}$ and edta takes place. |     |
|     |     |                                                                                                          | [2] |
|     |     |                                                                                                          | [-] |
|     |     |                                                                                                          |     |
|     |     |                                                                                                          |     |
|     |     |                                                                                                          |     |
|     |     |                                                                                                          |     |
|     |     |                                                                                                          |     |
|     |     |                                                                                                          |     |
|     |     |                                                                                                          |     |

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P

\*28AC22218\*

| (ii) | Describe how colorimetry can be used to prove that the ratio of copedta in $[Cu(edta)]^{2-}$ is 1:1. | oper(II) to |
|------|------------------------------------------------------------------------------------------------------|-------------|
|      |                                                                                                      |             |
|      |                                                                                                      |             |
|      |                                                                                                      |             |
|      |                                                                                                      |             |
|      |                                                                                                      | [5]         |
|      | Quality of written communication                                                                     | [2]         |
|      |                                                                                                      |             |
|      |                                                                                                      |             |
|      |                                                                                                      |             |
|      |                                                                                                      |             |
|      |                                                                                                      | [Turn over  |
|      |                                                                                                      | •••••••     |

# 

| (C) |       | oper is used to catalyse the decomposition of gaseous propanone to enone, $CH_2 = C = O$ , and methane. |   |
|-----|-------|---------------------------------------------------------------------------------------------------------|---|
|     | (i)   | Write an equation for the decomposition of propanone to ethenone and methane.                           |   |
|     | (ii)  | Explain and name the type of catalysis taking place.                                                    |   |
|     |       |                                                                                                         |   |
|     | (iii) | Explain how transition metals catalyse reactions by chemisorption.                                      |   |
|     |       |                                                                                                         |   |
|     |       |                                                                                                         |   |
|     |       |                                                                                                         | _ |
|     |       |                                                                                                         |   |
|     |       |                                                                                                         |   |
|     |       |                                                                                                         |   |
|     |       |                                                                                                         |   |
|     |       |                                                                                                         |   |



\*28AC22220\*

## **BLANK PAGE**

#### DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

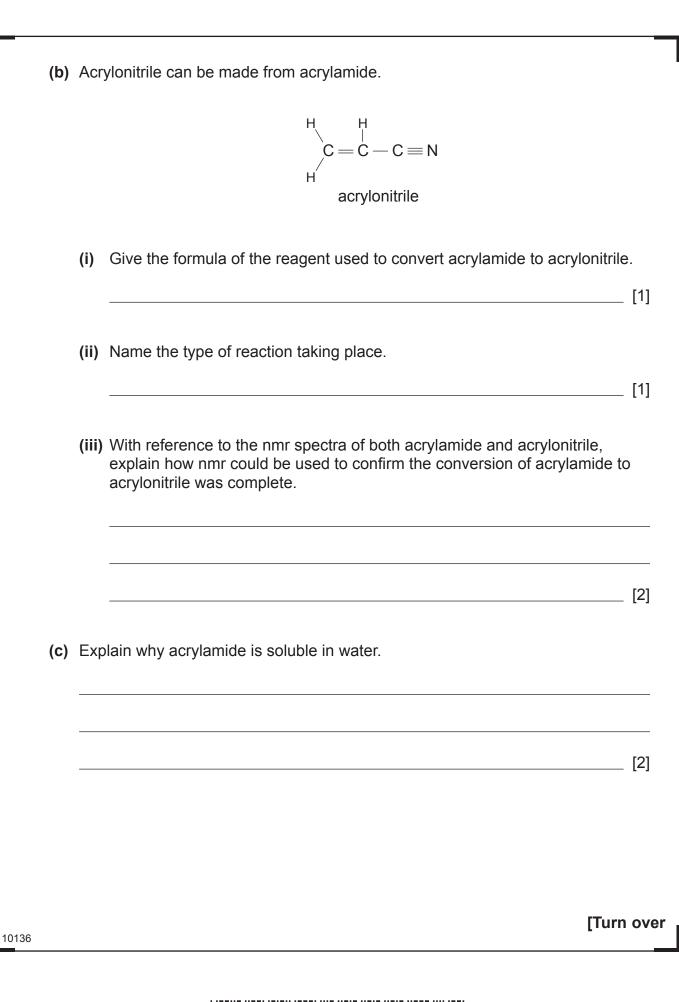
10136

[Turn over

# 

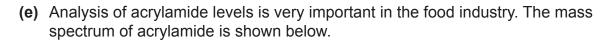
\*28AC22221\*

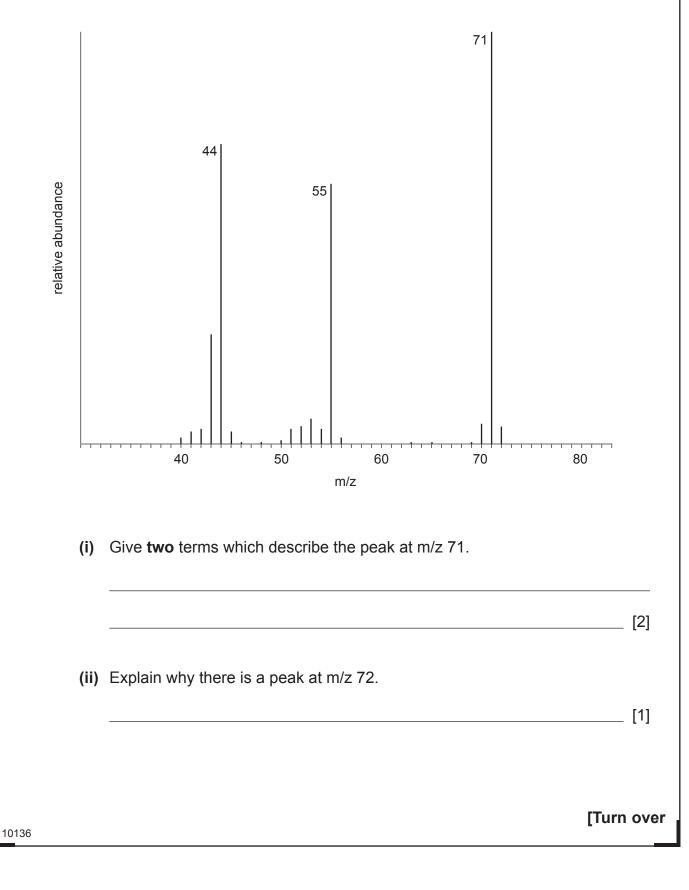
17 Acrylamide is a carcinogen that gets into the body via cigarette smoke and some types of fried food. It is highly soluble in water and can be produced by heating the product from the reaction of propenoic acid with ammonia.  $\cap$ Н propenoic acid  $\xrightarrow{NH_3}$  ammonium salt  $\xrightarrow{heat}$ C = CН NH<sub>2</sub> acrylamide (a) (i) Draw the structure of propenoic acid showing all the bonds present. [1] (ii) Suggest the formula of the ammonium salt. \_ [1] (iii) Suggest the name of the ammonium salt. \_ [1] 10136 


\*28AC22222\*

ÐÐ O: Ð Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ Œ ÐÐ Ø ÐÐ Œ Ð Œ Ð Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ Ð Œ Œ ÐÐ Œ DD 19 Laarnin Œ

y Learning Rowardin DD y Learning


Ð


Œ



\*28AC22223\*

| (d)   | (i)  | State the expected observations when acrylamide is added to bromine water. |       |
|-------|------|----------------------------------------------------------------------------|-------|
|       | ()   |                                                                            | _ [1] |
|       | (11) | Write the equation for this reaction.                                      | _ [1] |
|       |      |                                                                            |       |
|       |      |                                                                            |       |
|       |      |                                                                            |       |
|       |      |                                                                            |       |
|       |      |                                                                            |       |
|       |      |                                                                            |       |
|       |      |                                                                            |       |
| 10136 |      |                                                                            |       |
|       |      |                                                                            |       |





|     | (iii) Give the ion responsible for the peak at m/z 44.                                                                                                                                                                            | [1]        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (f) | Researchers suggest that the daily intake of acrylamide should not exc<br>$1.7 \times 10^{-4}$ moles per kilogram of bodyweight. Calculate the mass of a<br>in milligrams, that should not be exceeded by an 80 kg man on a daily | crylamide, |
|     |                                                                                                                                                                                                                                   | [3]        |
|     |                                                                                                                                                                                                                                   |            |
|     |                                                                                                                                                                                                                                   |            |
|     | THIS IS THE END OF THE QUESTION PAPER                                                                                                                                                                                             |            |
|     |                                                                                                                                                                                                                                   |            |
|     |                                                                                                                                                                                                                                   |            |
|     |                                                                                                                                                                                                                                   |            |
|     |                                                                                                                                                                                                                                   |            |
|     |                                                                                                                                                                                                                                   |            |
|     |                                                                                                                                                                                                                                   |            |



\*28AC22226\*

### **BLANK PAGE**

#### DO NOT WRITE ON THIS PAGE

10136

# 

\*28AC22227\*

#### DO NOT WRITE ON THIS PAGE

| For Examiner's use only |       |  |
|-------------------------|-------|--|
| Question<br>Number      | Marks |  |
| Section A               |       |  |
| 1–10                    |       |  |
| Section B               |       |  |
| 11                      |       |  |
| 12                      |       |  |
| 13                      |       |  |
| 14                      |       |  |
| 15                      |       |  |
| 16                      |       |  |
| 17                      |       |  |
| Total<br>Marks          |       |  |

Œ

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

209529

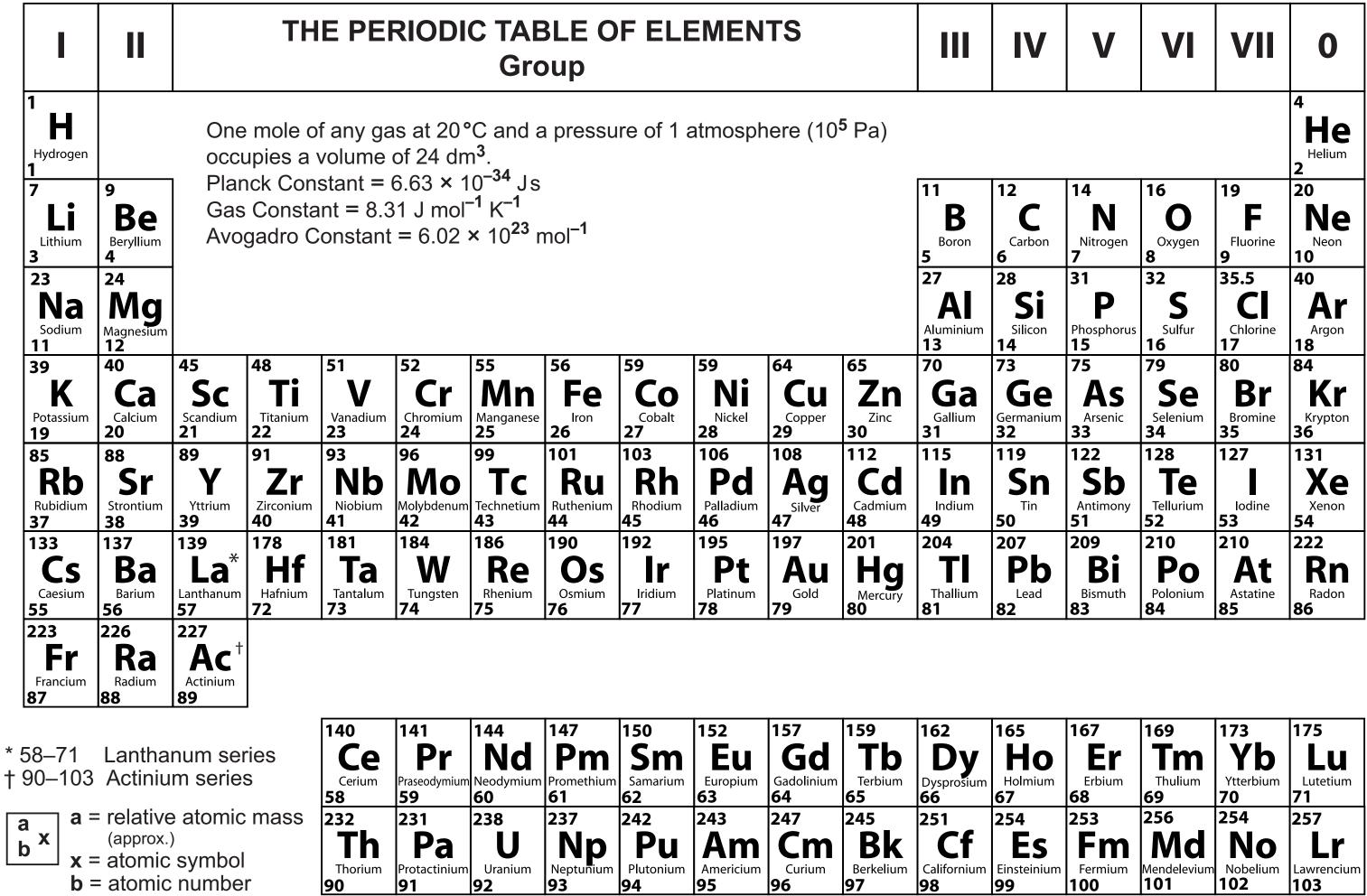
## 

\*28AC22228\*

# **Periodic Table of the Elements**

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

# gce A/AS examinations chemistry (advanced)




COUNCIL FOR THE CURRICULUM EXAMINATIONS AND ASSESSMENT 29 Clarendon Boad, Clarendon Dock, Belfast BT1 3BG © +44 (0)28 9026 1200 🖶 +44 (0)28 9026 1234 📾 +44 (0)28 9024 2063 🖂 info@ccea.org.uk ⊕ www.ccea.org.uk





For the use of candidates taking Advanced Subsidiary and Advanced Level **Chemistry Examinations** 

