Rewarding Learning
ADVANCED SUBSIDIARY (AS)
General Certificate of Education

## Chemistry

Assessment Unit AS 3<br>assessing<br>Module 3: Practical Examination<br>Practical Booklet B

[AC134]

## WEDNESDAY 27 MAY, MORNING

## TIME

1 hour 15 minutes.

## INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all five questions.
Write your answers in the spaces provided.

## INFORMATION FOR CANDIDATES

The total mark for this paper is 66 .

## Section A

Question 1 is worth 14 marks.
Question 2 is worth 16 marks.

## Section B

Question 3 is a planning exercise worth 20 marks.
Questions 4 and 5 are written questions worth a total of 16 marks, testing aspects of experimental chemistry.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A Periodic Table of Elements (including some data) is provided.
You may not have access to notes, textbooks and other material to assist you.

| For Examiner's use only |  |  |
| :---: | :---: | :---: |
| Question <br> Number | Examiner <br> Mark | Remark |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| 5 |  |  |
| Total <br> Marks |  |  |

## 1 Titration exercise

The percentage of calcium carbonate in toothpaste can be determined by back titration using the following method.

- Weigh out 2.0 g of toothpaste and place in a beaker.
- Pipette $40.0 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid into the beaker and add about $20 \mathrm{~cm}^{3}$ of deionised water.
- Heat and stir the mixture until the reaction is complete.
- When the mixture has cooled to room temperature filter it into a $250 \mathrm{~cm}^{3}$ volumetric flask and make up to the mark with deionised water.
- Titrate $25.0 \mathrm{~cm}^{3}$ portions of this mixture against $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution using an appropriate indicator.

A set of results is recorded in the following table.

|  | initial burette <br> reading $\left(\mathbf{c m}^{\mathbf{3}}\right)$ | final burette <br> reading $\left(\mathbf{c m}^{\mathbf{3}}\right)$ | titre $\left(\mathbf{c m}^{\mathbf{3}}\right)$ |
| :--- | :---: | :---: | :---: |
| Rough | 0.0 | 12.7 | 12.7 |
| 1st accurate | 0.0 | 12.0 | 12.0 |
| 2nd accurate | 12.0 | 24.0 | 12.0 |

Average titre $=12.0 \mathrm{~cm}^{3}$
(a) (i) Why is the mixture heated?
$\qquad$
(ii) How would you know when the reaction of toothpaste with hydrochloric acid is complete?
$\qquad$
(b) Write equations for the following reactions:
(i) Calcium carbonate with hydrochloric acid
$\qquad$
(ii) Sodium hydroxide with hydrochloric acid
$\qquad$
(c) State a suitable indicator for this titration and give the colour change at the end point.
$\qquad$
$\qquad$
(d) Use the following headings to calculate the percentage of calcium carbonate in the 2.0 g sample of toothpaste.

Number of moles of hydrochloric acid added to the toothpaste
$\qquad$

Number of moles of sodium hydroxide required for neutralisation
$\qquad$

Number of moles of hydrochloric acid in the $25.0 \mathrm{~cm}^{3}$ portion
$\qquad$

Number of moles of hydrochloric acid in the $250 \mathrm{~cm}^{3}$ mixture
$\qquad$

Number of moles of hydrochloric acid reacting with calcium carbonate in the toothpaste
$\qquad$

Number of moles of calcium carbonate present in the 2.0 g sample of toothpaste
$\qquad$

Mass of calcium carbonate present in the 2.0 g sample of toothpaste
$\qquad$

Percentage of calcium carbonate in the toothpaste
Number of moles of hydrochloric acid in the $25.0 \mathrm{~cm}^{3}$ portion
20 toothpaste
4-

Percentage of calcium carbonate in the toothaster

2 Observation/Deduction
(a) The following tests were carried out on solid barium chloride, $\mathbf{X}$. The table below is an incomplete set of observations and deductions for the tests. Complete the empty boxes in the table.

| Test | Observations | Deductions |
| :---: | :---: | :---: |
| 1 Add a spatula measure of $\mathbf{X}$ to a boiling tube half filled with deionised water. Retain for Tests 2, 3 and 5. | [1] |  |
| 2 Pour $1 \mathrm{~cm}^{3}$ of the solution from Test 1 into a test tube. <br> (a) Add 5 drops of silver nitrate solution. <br> (b) Add $4 \mathrm{~cm}^{3}$ of dilute ammonia solution. | [2] <br> [1] | Chloride ions present <br> Chloride ions confirmed |
| 3 Pour $1 \mathrm{~cm}^{3}$ of the solution from Test 1 into a test tube. <br> (a) Add 5 drops of potassium chromate solution. <br> (b) Add $5 \mathrm{~cm}^{3}$ of dilute hydrochloric acid. | [2] <br> [1] | Barium ions present |
| 4 Dip a nichrome wire loop in concentrated hydrochloric acid, touch sample $\mathbf{X}$ with the wire, then hold it in a blue Bunsen flame. | [1] | Confirms barium ions present |
| 5 Place $1 \mathrm{~cm}^{3}$ of magnesium sulfate solution in a test tube and add 5 drops of the solution from Test 1. | [2] |  |


(b) The following tests were carried out on the organic liquid, $\mathbf{Y}$, and the observations recorded in the table. Complete the deductions section of the table for each test.

| Test | Observations | Deductions |  |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | To 10 drops of Y in a test <br> tube add $1 \mathrm{~cm}^{3}$ of water. | Two layers formed |  |
| $\mathbf{2}$ | Place 10 drops of Y on a <br> watch glass on a heatproof <br> mat and ignite it using a <br> burning splint. | Burns with a yellow, smoky <br> flame |  |
| $\mathbf{3}$ | Add approximately 10 drops <br> of Y to a test tube quarter <br> full of bromine water and <br> mix well. | Orange bromine water is <br> decolourised | [1] |
| $\mathbf{4}$ | Add 10 drops of Y to 2 $\mathrm{cm}^{3}$ <br> of acidified potassium <br> dichromate solution in a test <br> tube and warm gently. | Orange colour remains | [1] |

From Test 3 what functional group is present in Y ?

From Test 4 what functional group may be absent from Y ?
$\qquad$

## 3 Planning

Magnesium reacts with copper(II) sulfate solution in a displacement reaction.

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

The enthalpy change for the reaction can be determined using the following method:

- Prepare $250 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) sulfate solution.
- Transfer $50 \mathrm{~cm}^{3}$ of the $1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ copper(II) sulfate solution into a polystyrene cup.
- Place a thermometer in the cup and record the temperature of the solution.
- Add 2.0 g of magnesium powder to the copper(II) sulfate solution in the cup.
- Use the thermometer to stir the reaction mixture and record the highest temperature reached.
(a) (i) Calculate the mass of hydrated copper(II) sulfate $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ required to make $250 \mathrm{~cm}^{3}$ of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution.
$\qquad$
$\qquad$
$\qquad$
(ii) Describe how you would prepare $250 \mathrm{~cm}^{3}$ of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of copper(II) sulfate from hydrated copper(II) sulfate crystals using a volumetric flask.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) Which piece of apparatus should be used to measure out $50 \mathrm{~cm}^{3}$ of copper(II) sulfate solution?
(c) Explain why the reaction is carried out in a polystyrene cup.
$\qquad$
(d) Suggest two observations for this reaction other than the production of heat.
$\qquad$
$\qquad$
(e) (i) Calculate the number of moles of each reactant used.
$\qquad$
$\qquad$
(ii) Why is the number of moles of magnesium not used in the calculation of the enthalpy change?
$\qquad$
(f) When magnesium was reacted with $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) sulfate solution a temperature rise of $35^{\circ} \mathrm{C}$ was recorded.
(i) Assuming copper(II) sulfate solution has a density of $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$ calculate the amount of heat energy given out in kJ .

The specific heat capacity of the copper(II) sulfate solution is $4.2 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$

You may ignore the effect of the added magnesium on the mass of the contents of the cup.
$\qquad$
$\qquad$
$\qquad$
(ii) Calculate the enthalpy change for the reaction in $\mathrm{kJ} \mathrm{mol}^{-1}$.
(g) State one practical way to prevent heat loss in this experiment.
$\qquad$
(h) Describe how you would confirm the presence of copper(II) ions in a solution of copper(II) sulfate.
$\qquad$
$\qquad$
$\qquad$

4 Bromination of an alkene
Bromine reacts with 2-methylbut-2-ene to produce 2,3-dibromo-2methylbutane.


The following is a method used to prepare 2,3-dibromo-2-methylbutane.
In a fume cupboard set up the apparatus for reflux with a dropping funnel for addition. Place 10 g of 2-methylbut-2-ene and $20 \mathrm{~cm}^{3}$ of water in the flask. Place 36 g of bromine (an excess) in the dropping funnel. Open the tap allowing the bromine to slowly drip into the flask. After all the bromine has been added heat the mixture under reflux.

Rearrange the apparatus for distillation. The distillate will include an aqueous layer; determine which layer is the aqueous layer and remove it using a separating funnel. Place the organic layer in a boiling tube, add anhydrous calcium chloride and shake well. Remove the calcium chloride and measure the mass of product before calculating the percentage yield.
(a) Why is the reaction carried out in a fume cupboard?
$\qquad$
(b) Suggest why the bromine is added slowly.
$\qquad$
(c) What is meant by the term reflux?
$\qquad$
$\qquad$
(d) What is the purpose of the anhydrous calcium chloride?
$\qquad$
(e) Describe practically how you would carry out the following parts of the method:
(i) "Determine which layer is the aqueous layer"
$\qquad$
$\qquad$
(ii) "Remove the calcium chloride"
$\qquad$
$\qquad$
(f) After following the method a student reported that 26.3 g of 2,3-dibromo-2-methylbutane had been formed.

Use the following headings to calculate the percentage yield.
Number of moles of 2-methylbut-2-ene used
$\qquad$
$\qquad$

Theoretical number of moles of 2,3-dibromo-2-methylbutane produced
$\qquad$

Theoretical mass of 2,3-dibromo-2-methylbutane produced
$\qquad$
$\qquad$

Percentage yield
$\qquad$

5 Tutton's salts are soluble double salts consisting of two different cations and sulfate ions. One example is ammonium magnesium sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Mg}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

Sodium hydroxide solution can be used to test for both the ammonium ion and the magnesium ion in a sample. Describe how the tests are carried out, stating any other required reagents and the expected observations.

Ammonium ion $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Magnesium ion $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified

