

Rewarding Learning

ADVANCED SUBSIDIARY (AS)

General Certificate of Education

 2014
Chemistry

Assessment Unit AS 3
 assessing
 Module 3: Practical Examination
 Practical Booklet A
 [AC133]

WEDNESDAY 7 MAY, MORNING

TIME

1 hour, plus your additional time allowance.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer both questions.
Write your answers in the spaces provided.

INFORMATION FOR CANDIDATES

The total mark for this paper is 22 .
Question 1 is a practical exercise worth 8 marks.
Question 2 is a practical exercise worth 14 marks.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A Periodic Table of Elements (including some data) is provided.
You may not have access to notes, textbooks and other material to assist you.

BLANK PAGE

1 Titration exercise
Calcium carbonate is present in some indigestion tablets.
You are required to carry out a back titration to find the mass of calcium carbonate in an indigestion tablet.

You are provided with:
Solution A made by reacting two indigestion tablets with $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid and then making the solution up to $250 \mathrm{~cm}^{3}$
A solution of $0.10 \mathrm{moldm}^{-3}$ sodium hydroxide
Phenolphthalein indicator
To carry out the titration:

- rinse out the burette with the $0.10 \mathrm{moldm}^{-3}$ sodium hydroxide solution
- fill the burette with the $0.10 \mathrm{moldm}^{-3}$ sodium hydroxide solution
- transfer $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{A} to the conical flask
- add 2-3 drops of phenolphthalein indicator to the solution in the conical flask and titrate until the end point is reached

Present your results in a suitable table and calculate the average titre.

Results table

Safety glasses should be worn at all times and care should be taken during this practical examination.
(a) You are provided with a mixture of two salts, labelled B, which have a common cation. Carry out the following tests on the mixture. Record your observations in the spaces below.

Test	Observations
1 Place a spatula measure of B in a test tube and heat strongly. Bubble any gas given off through limewater.	[2]
2 Make a solution of B by dissolving a half spatula measure of \mathbf{B} in a test tube one third full of dilute hydrochloric acid. Add $1 \mathrm{~cm}^{3}$ of barium chloride solution to the test tube.	[1] [1]
3 Make a solution of B by dissolving a half spatula measure of \mathbf{B} in a test tube one third full of deionised water. Add $1 \mathrm{~cm}^{3}$ of magnesium sulfate solution to the test tube.	[1]
4 Make a solution of B by dissolving a quarter spatula measure of \mathbf{B} in a test tube one third full of dilute nitric acid. Add $1 \mathrm{~cm}^{3}$ of silver nitrate solution and then, in a fume cupboard, $1 \mathrm{~cm}^{3}$ of concentrated ammonia solution.	[2]
5 Dip a nichrome wire loop in concentrated hydrochloric acid; touch \mathbf{B} with the wire and then hold it in a blue Bunsen flame.	[1]

(b) You are provided with an organic liquid C. Carry out the following tests on the liquid. Record your observations in the spaces below.

Test	Observations
1 Place $1 \mathrm{~cm}^{3}$ of \mathbf{C} in a test tube and add $1 \mathrm{~cm}^{3}$ of deionised water.	[1]
2 Place 10 drops of \mathbf{C} on a watch glass placed on a heatproof mat and ignite it using a burning splint.	[2]
3 In a fume cupboard add approximately $0.5 \mathrm{~cm}^{3}$ of \mathbf{C} to a test tube one quarter full of bromine water and mix well.	[2]
4 Place $1 \mathrm{~cm}^{3}$ of \mathbf{C} in a test tube. Add $2 \mathrm{~cm}^{3}$ of potassium dichromate solution acidified by adding $2 \mathrm{~cm}^{3}$ of dilute sulfuric acid. Warm the mixture gently, swirl, and leave to stand for 5 minutes.	[1]

THIS IS THE END OF THE QUESTION PAPER

