Rewarding Learning
ADVANCED SUBSIDIARY (AS)
General Certificate of Education 2014

Centre Number
71

Candidate Number
\qquad

Chemistry

Assessment Unit AS 3 assessing
 Module 3: Practical Examination
 Practical Booklet B
 [AC134]

THURSDAY 8 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all five questions.
Write your answers in the spaces provided.

INFORMATION FOR CANDIDATES

The total mark for this paper is 68 .

Section A

Question 1 is a practical exercise worth 17 marks.
Question 2 is a practical exercise worth 15 marks.

Section B

Question 3 is a planning exercise worth 20 marks.
Questions 4 and 5 are written questions worth a total of
16 marks, testing aspects of experimental chemistry.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A Periodic Table of Elements (including some data) is provided.
You may not have access to notes, textbooks and other material to assist you.

For Examiner's use only		
Question Number	Examiner Mark	Remark
1		
2		
3		
4		
5		
Total Marks		

1 Titration exercise

A back titration was used to calculate the mass of calcium carbonate in an indigestion tablet.

Solution A was made by reacting two indigestion tablets, total mass 2.64 g , with $25.0 \mathrm{~cm}^{3}$ of 2.0 mol dm ${ }^{-3}$ hydrochloric acid and then making this up to $250 \mathrm{~cm}^{3}$.
$25.0 \mathrm{~cm}^{3}$ of this solution was then titrated against $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution and the titre was found to be $23.8 \mathrm{~cm}^{3}$.
(a) The indicator used was phenolphthalein. State the colour change at the end point of the titration.
\qquad to
(b) (i) Write an equation for the reaction of calcium carbonate with hydrochloric acid.
\qquad
(ii) Write an equation for the reaction of hydrochloric acid with sodium hydroxide.

Use the following steps to calculate the mass of calcium carbonate in an indigestion tablet.
(c) (i) Calculate the number of moles of sodium hydroxide which reacted with $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{A}.
\qquad
(ii) Calculate the number of moles of hydrochloric acid in $25 \mathrm{~cm}^{3}$ of solution \mathbf{A}.
\qquad
(iii) Calculate the number of moles of unreacted hydrochloric acid in $250 \mathrm{~cm}^{3}$ of solution \mathbf{A}.
\qquad
(iv) Calculate the number of moles of hydrochloric acid added to the indigestion tablets.
\qquad
(v) Calculate the number of moles of hydrochloric acid which reacted with the calcium carbonate in the indigestion tablets.
\qquad
(vi) Calculate the number of moles of calcium carbonate in the indigestion tablets.
\qquad
(vii) Calculate the mass of calcium carbonate in one indigestion tablet.
(d) (i) The indigestion tablets also contain glucose, sucrose and a flavouring. Suggest why these do not affect the titration value obtained.
\qquad
(ii) Explain why the accuracy of the titration is increased by washing the insides of the conical flask with deionised water during the titration.
\qquad
\qquad
(iii) Suggest one other way in which the accuracy of the titration can be increased.
\qquad
(iv) Suggest two ways in which the reliability can be increased.
\qquad
\qquad
\qquad
\qquad (2]

2 Observations and deductions.

(a) A mixture of two white salts, labelled \mathbf{Y}, have a common cation.

The following tests were carried out on Y and the observations noted in the table. Complete the table by recording the deductions which can be made from these observations and identify the two salts.

Test	Observations	Deductions
1 Place a spatula measure of Y in a test tube and heat strongly. Test any gas given off with lime water.	Colourless liquid on sides of test tube Limewater turns milky	[2]
2 Make a solution of Y by dissolving a half spatula measure of \mathbf{Y} in a test tube one third full of dilute hydrochloric acid. Add $1 \mathrm{~cm}^{3}$ of barium chloride solution to the test tube.	Effervescence No change	[1] [1]
3 Make a solution of Y by dissolving a half spatula measure of \mathbf{Y} in a test tube one third full of deionised water. Add $1 \mathrm{~cm}^{3}$ of magnesium sulfate solution to the test tube.	No change	[1]
4 Make a solution of \mathbf{Y} by dissolving a quarter spatula measure of \mathbf{Y} in a test tube one third full of dilute nitric acid. Add $1 \mathrm{~cm}^{3}$ of silver nitrate solution and then, in a fume cupboard, $5 \mathrm{~cm}^{3}$ of dilute ammonia solution.	White precipitate, precipitate dissolves	[1]
5 Dip a nichrome wire loop in concentrated hydrochloric acid; touch \mathbf{Y} with the wire and then hold it in a blue Bunsen flame.	Lilac flame	[1]

Name the two salts present in \mathbf{Y} :

Examiner	
Mark	Remark

(b) The following observations were recorded for tests carried out on an organic liquid, labelled Z. Complete the deductions.

	Test	Observations	Deductions
$\mathbf{1}$	Place $1 \mathrm{~cm}^{3}$ of \mathbf{Z} in a test tube and add $1 \mathrm{~cm}^{3}$ of water, add a bung and shake the test tube.	Two layers formed	
$\mathbf{2}$	Place 10 drops of \mathbf{Z} on a watch glass placed on a heatproof mat and ignite it using a burning splint.	Yellow, smoky flame	
$\mathbf{3}$	In a fume cupboard add approximately $0.5 \mathrm{~cm}^{3}$ of \mathbf{Z} to a test tube one quarter full of bromine water and mix well.	Orange bromine water decolourised	
$\mathbf{4}$Place $1 \mathrm{~cm}^{3}$ of \mathbf{Z} in a test tube and add $1 \mathrm{~cm}^{3}$ of ethanol and $1 \mathrm{~cm}^{3}$ of silver nitrate. Place the test tube in a beaker of water heated to just below boiling point. Leave for 5 minutes.	Yellow precipitate		

Based on the experiments above, suggest:

two functional groups which may be present in \mathbf{Z}.

1. \qquad
2.

Section B

3 Planning

Ethyl ethanoate can be prepared by reacting ethanol with glacial (pure) ethanoic acid.

© Organic Chemistry Through Experiment by DJ Waddington \& HS Finlay, page 51, published by Collins Education, 1981. Reproduced by kind permission of HarperCollins publishers
Place $5.0 \mathrm{~cm}^{3}$ of ethanol in the flask, immersing the latter in oil. Add slowly and with gentle stirring $5.0 \mathrm{~cm}^{3}$ of concentrated sulfuric acid. Set up the apparatus as shown in the diagram.

Place a mixture of $5.0 \mathrm{~cm}^{3}$ ethanol and $12 \mathrm{~cm}^{3}$ of ethanoic acid in the dropping funnel. Raise the temperature of the oil bath to $140^{\circ} \mathrm{C}$, then run the mixture dropwise into the flask. Add the mixture at the same rate as the ethyl ethanoate distils over.

Transfer the distillate to a separating funnel. Add $10 \mathrm{~cm}^{3}$ of sodium carbonate solution and shake, removing the stopper from time to time. Discard the lower aqueous layer.

Run the upper layer into a beaker and add a suitable drying agent. Redistil the liquid collecting the fraction which boils between $75-79^{\circ} \mathrm{C}$.
(a) Write an equation for the reaction of ethanol with ethanoic acid.
(b) Suggest why the apparatus must not contain water.
(c) (i) Give two safety precautions when handling concentrated sulfuric acid.
\qquad
\qquad
(ii) Why is the concentrated sulfuric acid added slowly?
\qquad
(iii) Name two substances which remain in the flask after the first distillation.
\qquad
\qquad
(d) (i) What is the purpose of adding the sodium carbonate solution to the separating funnel?
\qquad
(ii) Why must the stopper be removed from the separating funnel 'from time to time'?
\qquad
(e) (i) Name a suitable drying agent for the ethyl ethanoate.
\qquad
(ii) How would you know, from its appearance, when the ethyl ethanoate is dry?
\qquad
(iii) How could you separate the ethyl ethanoate from the drying agent?
(f) The mass of ethanol used was 7.90 g and that of ethanoic acid 12.60 g .
(i) Calculate the number of moles of ethanol used.
\qquad
(ii) Calculate the number of moles of ethanoic acid used.
\qquad
(iii) Calculate the theoretical yield of ethyl ethanoate in grams.
\qquad
\qquad
(iv) $8.2 \mathrm{~cm}^{3}$ of ethyl ethanoate were collected. The density of ethyl ethanoate is $0.92 \mathrm{~g} \mathrm{~cm}^{-3}$. Calculate the mass of ethyl ethanoate collected.
\qquad
\qquad
(v) What is the percentage yield of the ethyl ethanoate?
\qquad
(vi) State two reasons why the percentage yield is less than 100%.
\qquad
\qquad

4 When an ionic solid dissolves in water there may be a temperature change.

A student placed $100 \mathrm{~cm}^{3}$ of water in a polystyrene beaker and then recorded the temperature. He dissolved powdered hydrated copper(II) sulfate, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in the water and recorded the temperature again.

Mass of hydrated copper(II) sulfate added $=2.07 \mathrm{~g}$
Initial temperature $=18.0^{\circ} \mathrm{C}$
Final temperature $=17.8^{\circ} \mathrm{C}$
Specific heat capacity of water is $4.2 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~g}^{-1}$
(a) Why is the hydrated copper(II) sulfate powdered?
\qquad
(b) Calculate the enthalpy change on dissolving the hydrated copper(II) sulfate in the water.
\qquad
\qquad
(c) Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$ on dissolving one mole of hydrated copper(II) sulfate in water.
\qquad
\qquad
(d) The actual value is $11.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Give one source of error in the student's experiment and suggest how it could be reduced.
\qquad
\qquad
(e) When anhydrous copper(II) sulfate is added to water the temperature rises. Explain why.
\qquad
\qquad

5 Ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$, decomposes on heating forming nitrogen, oxygen and water.
(a) Write an equation for the decomposition of ammonium nitrate.
\qquad
(b) Describe a test to show the presence of oxygen.
\qquad
\qquad
(c) Calculate the volume of gas produced at $20^{\circ} \mathrm{C}$ and one atmosphere pressure by decomposing 1.25 g of ammonium nitrate.
\qquad
\qquad
(d) Ammonium nitrate reacts with sodium hydroxide solution to form ammonia gas. Describe a test to show the presence of ammonia.
\qquad
\qquad

