

Rewarding Learning

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2013

Chemistry

Assessment Unit AS 1
assessing
Basic Concepts in Physical and Inorganic Chemistry
[AC112]

WEDNESDAY 12 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all sixteen questions.
Answer all ten questions in Section A. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10 . Keep in sequence when answering.
Answer all six questions in Section B. Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES
The total mark for this paper is 100.
Quality of written communication will be assessed in Question 16(b)(iii).
In Section A all questions carry equal marks, i.e. two marks for each question.
In Section B the figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A Periodic Table of the Elements, containing some data, is included in this question paper.

For Examiner's use only	
Question Number	Marks
Section A	
$1-10$	
Section B	
11	
12	
13	
14	
15	
16	
Total	
Marks	

Section A

For each of the following questions only one of the lettered responses (A-D) is corn
Select the correct response in each case and mark its code letter by connecting th as illustrated on the answer sheet.

1 Which one of the following is the formula for nitrogen(I) oxide?
A NO
B NO_{2}
C $\mathrm{N}_{2} \mathrm{O}$
D $\mathrm{N}_{2} \mathrm{O}_{4}$

2 Which one of the following is the number of atoms present in 0.25 moles of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?
A $\quad 6.8 \times 10^{24}$
B 1.4×10^{25}
C 2.7×10^{25}
D 1.1×10^{26}

3 Which one of the following is a molecular covalent substance?
A CaO
B CO
C $\mathrm{Cr}_{2} \mathrm{O}_{3}$
D CuO

4 A caesium atom differs from a caesium ion because the atom has a greater
A atomic number.
B mass number.
C number of electrons.
D number of protons.

5 Part of the mass spectrum for aspirin is shown below. Which one of the folr is the molecular ion peak?

A 93
B 137
C 179
D 180

6 In which one of the following liquids are the van der Waals forces greatest?
A Argon
B Krypton
C Neon
D Xenon

7 Prozac tablets contain 20 mg of fluoxetine $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}\right)$ in each tablet. The number of moles of fluoxetine in each tablet is

A $\quad 6.47 \times 10^{-5}$
B 1.39×10^{-4}
C $\quad 6.47 \times 10^{-2}$
D 1.39×10^{-1}

8 Which one of the following does not have a total of 14 electrons?
A CO
B $\mathrm{Li}_{2} \mathrm{O}$
C N_{2}
D S^{2-}

9 Successive ionisation energies for elements X and Y are shown below.

lonisation energy $\mathbf{(k J ~ m o l}^{-1}$)	1st	2nd	3rd	4th	5th	6th	7th	8th
X	578	1817	2745	11577	14842	18379	23326	27465
Y	1314	3388	5301	7469	10990	13327	71330	84078

Which one of the following is the formula for a compound of X and Y ?
A $X Y_{2}$
B $X_{2} Y$
C $X_{2} Y_{3}$
D $X_{3} Y_{2}$

10 Hexan-1-ol can be converted to hex-1-ene as follows:

$$
\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{OH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{H}_{2} \mathrm{O}
$$

40.0 g of hexan-1-ol produced 24.7 g of hex-1-ene. Which one of the following is the percentage yield?

A 24.7%
B 50.8\%
C 72.0\%
D 75.0\%

BLANK PAGE

(Questions continue overleaf)

Section B

Answer all six questions in this section.
11 (a) Atoms consist of protons, neutrons and electrons.
(i) Complete the table below giving the properties of a proton, a neutron and an electron.

	Relative mass	Relative charge
Proton		
Neutron		
Electron		

(ii) Element 116, ununhexium, was added to the Periodic Table in June 2011. Complete the table below.

Atomic number	116
Mass number	
Number of protons	
Number of neutrons	177
Number of electrons	

(b) Iron is the sixth most abundant element in the Universe. It has four isotopes as shown in the table.

Isotope	${ }^{54} \mathrm{Fe}$	${ }^{56} \mathrm{Fe}$	${ }^{57} \mathrm{Fe}$	${ }^{58} \mathrm{Fe}$
Percentage abundance	5.84	91.76	2.12	0.28

(i) Explain what is meant by the term isotope.
\qquad
\qquad
(ii) Use the table to calculate the relative atomic mass of iron to two decimal places.
\qquad
\qquad
\qquad

12 The emission spectrum for atomic hydrogen has been used to provide evidence for discrete electron energy levels in atoms.
(a) Complete the diagram to show the electron transitions associated with the first two lines of the hydrogen emission spectrum in the visible region.
$\mathrm{n}=5$ \qquad
$\mathrm{n}=4$ \qquad
$\mathrm{n}=3$ \qquad
$\mathrm{n}=2$ \qquad
$\mathrm{n}=1$
(b) The convergence limit of the hydrogen spectrum in the ultraviolet region is at $3.28 \times 10^{15} \mathrm{~Hz}$. Calculate the ionisation energy of hydrogen in $\mathrm{kJ} \mathrm{mol}^{-1}$.
\qquad
\qquad
\qquad
(c) The emission spectra of elements give rise to characteristic flame colours. Complete the table below.

Flame colour	Formula of metal ion
Blue-green	
Crimson	
Green	

13 Wood vinegar, which contains ethanoic acid, is formed when wood is heated. The percentage by mass of ethanoic acid in wood vinegar can be found by titration with standard sodium hydroxide solution.
(a) (i) What is meant by the term standard solution?
\qquad
(ii) Write the equation for the reaction between ethanoic acid and sodium hydroxide.
\qquad
(b) $25.0 \mathrm{~cm}^{3}$ of wood vinegar were diluted to $250 \mathrm{~cm}^{3}$ in a volumetric flask. $25.0 \mathrm{~cm}^{3}$ of the diluted wood vinegar required $30.3 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution for neutralisation.
(i) How many moles of sodium hydroxide were required?
(ii) How many moles of ethanoic acid were present in the $25.0 \mathrm{~cm}^{3}$ of diluted wood vinegar?
\qquad
(iii) How many moles of ethanoic acid were present in $25.0 \mathrm{~cm}^{3}$ of undiluted wood vinegar?
\qquad
(iv) What was the mass of ethanoic acid in the $25.0 \mathrm{~cm}^{3}$ of undiluted wood vinegar?
\qquad
(v) What was the percentage of ethanoic acid by mass in the wood vinegar? Assume that the density of wood vinegar is $1.02 \mathrm{~g} \mathrm{~cm}^{-3}$.
\qquad
\qquad
(c) Suggest a suitable indicator for the titration and state the colour change at the end point.

Indicator: \qquad
Colour change: from \qquad
to

14 The Third Period from sodium to argon can be used to illustrate trends in the Periodic Table.
(a) In which block of the Periodic Table is argon found? Explain your answer.
\qquad
\qquad
(b) The graph below shows the melting points of the elements in the Third Period.

(i) Explain the rise in melting point from sodium to magnesium.
\qquad
\qquad
\qquad
(ii) Explain why silicon has the highest melting point.
\qquad
\qquad
\qquad
(iii) Explain why the melting point of sulfur, S , is higher than phosphorus, P.
\qquad
\qquad
\qquad
(c) State and explain the trend in atomic radius across the Third Period.
\qquad
\qquad
\qquad
\qquad

15 Aluminium chloride exists as the molecule AlCl_{3} in the vapour state. This molecule contains covalent bonds and does not obey the octet rule.
(a) (i) Explain what is meant by the term covalent bond.
\qquad
\qquad
(ii) Explain what is meant by the term octet rule.
\qquad
\qquad
(b) Aluminium chloride reacts with chloride ions as follows:

$$
\mathrm{AlCl}_{3}+\mathrm{Cl}^{-} \rightarrow \mathrm{AlCl}_{4}^{-}
$$

(i) Draw dot and cross diagrams, using outer electrons only, to show the bonding in AlCl_{3} and $\mathrm{AlCl}_{4}{ }^{-}$.
(ii) What type of bond is formed between AlCl_{3} and the Cl^{-}ion?
(iii) Draw and name the shapes of AlCl_{3} and $\mathrm{AlCl}_{4}{ }^{-}$.

BLANK PAGE

(Questions continue overleaf)

16 The halogens form Group VII of the Periodic Table.
(a) The table below gives some of the physical properties of the halogens.

Element	Atomic radius $(\mathbf{n m})$	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$	Electronegativity value	First ionisation energy $\left(\mathbf{k J ~ m o l}^{-1}\right)$
Fluorine	0.133	-187	4.0	1618
Chlorine	0.181	-35	3.0	1256
Bromine	0.196	59	2.8	1143
lodine	0.219	183	2.0	1009

(i) Explain why the atomic radii of the halogens increase as the Group is descended.
\qquad
\qquad
(ii) Explain the trend in the boiling points of the halogens.
\qquad
\qquad
(iii) Explain what is meant by the term electronegativity.
\qquad
\qquad
(iv) Explain the trend in electronegativity values of the halogens.
\qquad
\qquad
\qquad
(v) Write an equation, including state symbols, for the first ionisation energy of fluorine.
\qquad
(vi) Explain the trend in the first ionisation energy of the halogens.
\qquad
\qquad
\qquad
(b) Chlorine is used to sterilise water.
(i) Write an equation for the reaction of chlorine with water.
\qquad
(ii) Using changes in oxidation number explain why this is considered to be a disproportionation reaction.
\qquad
\qquad
\qquad
(iii) Ultraviolet light does not react with water and is equally effective as chlorine at sterilising water. Suggest the advantages and disadvantages of storing and using chlorine to sterilise water.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication
(c) lodide ions react with a variety of reagents. For each of the following state what you would observe and write an equation for the reaction.
(i) Chlorine gas with aqueous iodide ions.

Observation \qquad
Equation
(ii) A solution containing excess Fe^{3+} ions with aqueous iodide ions.

Observation \qquad
Equation
(iii) Silver nitrate solution with aqueous iodide ions.

Observation \qquad
Equation

THIS IS THE END OF THE QUESTION PAPER

