

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2013

Chemistry

Assessment Unit AS 1

assessing

Basic Concepts in Physical and Inorganic Chemistry

[AC112]

WEDNESDAY 12 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer all sixteen questions.

Answer **all ten** questions in **Section A**. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10. Keep in sequence when answering.

Answer **all six** questions in **Section B**. Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.

Quality of written communication will be assessed in Question **16(b)(iii)**.

In Section A all questions carry equal marks, i.e. **two** marks for each question.

In Section B the figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A Periodic Table of the Elements, containing some data, is included in this question paper.

8181.04**R**

For Examiner's use only						
Question Number	Marks					
Sect	tion A					
1–10						
Secti	on B					
11						
12						
13						
14						
15						
16						

SHILDEN BOUNTY COM

Total	
Marks	

Section A

For each of the following questions only one of the lettered responses (A-D) is con-

Student Bounts, com Select the correct response in each case and mark its code letter by connecting the as illustrated on the answer sheet.

- Which one of the following is the formula for nitrogen(I) oxide?
 - NO Α
 - NO_2 В
 - C N₂O
 - D N₂O₄
- Which one of the following is the number of atoms present in 0.25 moles of C₁₂H₂₂O₁₁? 2
 - A 6.8×10^{24}
 - B 1.4×10^{25}
 - C 2.7×10^{25}
 - D 1.1×10^{26}
- Which one of the following is a molecular covalent substance? 3
 - Α CaO
 - CO В
 - $C Cr_2O_3$
 - CuO D
- A caesium atom differs from a caesium ion because the atom has a greater
 - Α atomic number.
 - В mass number.
 - number of electrons. C
 - number of protons. D

5

- Α 93
- 137 В
- С 179
- D 180
- In which one of the following liquids are the van der Waals forces greatest?
 - Α Argon
 - Krypton В
 - C Neon
 - D Xenon
- Prozac tablets contain 20 mg of fluoxetine ($C_{17}H_{18}F_3NO$) in each tablet. The number of 7 moles of fluoxetine in each tablet is
 - Α 6.47×10^{-5}
 - 1.39×10^{-4} В
 - C 6.47×10^{-2}
 - 1.39×10^{-1} D

- A CO
- B Li₂O
- $C N_2$
- D S²⁻

9 Successive ionisation energies for elements X and Y are shown below.

lonisation energy (kJ mol ⁻¹)	1st	2nd	3rd	4th	5th	6th	7th	8th
X	578	1817	2745	11577	14842	18379	23326	27465
Y	1314	3388	5301	7469	10 990	13327	71330	84 078

Which one of the following is the formula for a compound of X and Y?

- A XY₂
- B X₂Y
- $C X_2Y_3$
- D X_3Y_2

10 Hexan-1-ol can be converted to hex-1-ene as follows:

$$\mathrm{C_6H_{13}OH} \rightarrow \mathrm{C_6H_{12}} + \mathrm{H_2O}$$

40.0 g of hexan-1-ol produced 24.7 g of hex-1-ene. Which one of the following is the percentage yield?

- A 24.7%
- B 50.8%
- C 72.0%
- D 75.0%

BLANK PAGE

(Questions continue overleaf)

- 11 (a) Atoms consist of protons, neutrons and electrons.
 - (i) Complete the table below giving the properties of a proton, a neutron and an electron.

	Relative mass	Relative charge
Proton		
Neutron		
Electron		

[3]

(ii) Element 116, ununhexium, was added to the Periodic Table in June 2011. Complete the table below.

	·
Atomic number	116
Mass number	
Number of protons	
Number of neutrons	177
Number of electrons	

[3]

(b) Iron is the sixth most abundant element in the Universe. It has four isotopes as shown in the table.

Isotope	⁵⁴ Fe	⁵⁶ Fe	⁵⁷ Fe	⁵⁸ Fe
Percentage abundance	5.84	91.76	2.12	0.28

/	١.	Explain	what in	moont	hy tha	torm	inata	~~
U	I <i>)</i>		wiiat is	IIICalli	Dy lile	rellii	15010	JE.

_____[2]

(ii) Use the table to calculate the relative atomic mass of iron to **two** decimal places.

_____[2]

- 12 The emission spectrum for atomic hydrogen has been used to provide evidence for discrete electron energy levels in atoms.
- SHIIdenHounty.com (a) Complete the diagram to show the electron transitions associated with the first **two** lines of the hydrogen emission spectrum in the visible region.

n = 5 _____

n = 2

n = 1 ______ [2]

(b) The convergence limit of the hydrogen spectrum in the ultraviolet region is at 3.28×10^{15} Hz. Calculate the ionisation energy of hydrogen in kJ mol⁻¹.

(c) The emission spectra of elements give rise to characteristic flame colours. Complete the table below.

Flame colour	Formula of metal ion
Blue-green	
Crimson	
Green	

[3]

hea	ted.	rinegar, which contains ethanoic acid, is formed when wood is. The percentage by mass of ethanoic acid in wood vinegar can be by titration with standard sodium hydroxide solution. What is meant by the term standard solution? [1]	nark
(a)	(i)	What is meant by the term standard solution?	7.0
		[1]	13
	(ii)	Write the equation for the reaction between ethanoic acid and sodium hydroxide.	
		[1]	
(b)	25.0	0 cm ³ of wood vinegar were diluted to 250 cm ³ in a volumetric flask. 0 cm ³ of the diluted wood vinegar required 30.3 cm ³ of 0.1 mol dm ⁻³ dium hydroxide solution for neutralisation.	
	(i)	How many moles of sodium hydroxide were required?	
		[1]	
	(ii)	How many moles of ethanoic acid were present in the 25.0 cm ³ of diluted wood vinegar?	
		[1]	
	(iii)	How many moles of ethanoic acid were present in 25.0 cm ³ of undiluted wood vinegar?	
		[1]	
	(iv)	What was the mass of ethanoic acid in the 25.0 cm ³ of undiluted wood vinegar?	
		[1]	
	(v)	What was the percentage of ethanoic acid by mass in the wood vinegar? Assume that the density of wood vinegar is 1.02 g cm ⁻³ .	

[1]

Student Bounty.com Indicator: _____ Colour change: from _____

Student Bounty.com _ [2]

(b) The graph below shows the melting points of the elements in the Third Period.

(i) Explain the rise in melting point from sodium to magnesium.

[2]

_____ [3]

(a) (i) Explain what is meant by the term **covalent bond**.

Student Bounts, com

(ii) Explain what is meant by the term **octet rule**.

__ [2]

(b) Aluminium chloride reacts with chloride ions as follows:

$$AICI_3 + CI^- \rightarrow AICI_4^-$$

(i) Draw dot and cross diagrams, using outer electrons only, to show the bonding in $AICI_3$ and $AICI_4^-$.

[4]

- (ii) What type of bond is formed between AlCl₃ and the Cl⁻ ion? [1]
- (iii) Draw and name the shapes of ${\rm AICI_3}$ and ${\rm AICI_4}^-.$

[4]

BLANK PAGE

(Questions continue overleaf)

		·	Periodic Table.	es of the halogens. First ionisation energy (k.l.mol ⁻¹)
Element	Atomic radius (nm)	Boiling point (°C)	Electronegativity value	First ionisation energy (kJ mol ⁻¹)
Fluorine	0.133	⁻ 187	4.0	1618
Chlorine	0.181	⁻ 35	3.0	1256
Bromine	0.196	59	2.8	1143
lodine	0.219	183	2.0	1009

(i)	Explain why the atomic radii of the halogens increase as the Group is descended.	
		_ [1]
(ii)	Explain the trend in the boiling points of the halogens.	
		_ [2]
(iii)	Explain what is meant by the term electronegativity .	
		_ [1]
(iv)	Explain the trend in electronegativity values of the halogens.	
		[2]

(i) Chlorine gas \	with aqueous	iodide ions.
--------------------	--------------	--------------

STILL	
ide ions react with a variety of reagents. For each of the following te what you would observe and write an equation for the reaction.	r Only mark
Chlorine gas with aqueous iodide ions.	THE
Observation	7. COM
Equation [3]	13

(ii) A solution containing excess Fe³⁺ ions with aqueous iodide ions.

Observation Equation _____ [3]

(iii) Silver nitrate solution with aqueous iodide ions.

Observation ____

Equation _____ [3]

THIS IS THE END OF THE QUESTION PAPER

SHILDERIH BOUNTS, COM

SHILDERIH BOUNTS, COM

SHILDERIH BOUNTS, COM

Student Bounty.com

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.