ADVANCED SUBSIDIARY (AS)
General Certificate of Education January 2010

Chemistry

Assessment Unit AS 1 assessing
 Basic Concepts in Physical and Inorganic Chemistry

[AC111]

THURSDAY 14 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all fifteen questions.
Answer all ten questions in Section A. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10 . Keep in sequence when answering. Answer all five questions in Section B. Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.
Quality of written communication will be assessed in question 13(c). In Section A all questions carry equal marks, i.e. two marks for each question.
In Section B the figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A Periodic Table of Elements (including some data) is provided.

For Examiner's use only	
Question Number	Marks
Section A	
$1-10$	
Section B	
11	
12	
13	
14	
15	
Total Marks	

Section A

For each of the following questions only one of the lettered responses (A-D) is corr
Select the correct response in each case and mark its code letter by connecting the as illustrated on the answer sheet.
12.65 g of anhydrous sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, was dissolved in water and the solution made up to $250 \mathrm{~cm}^{3}$ in a volumetric flask. The concentration of the solution was

A $0.025 \mathrm{moldm}^{-3}$
B $0.050 \mathrm{~mol} \mathrm{dm}^{-3}$
C $\quad 0.100 \mathrm{~mol} \mathrm{dm}^{-3}$
D $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$

2 In which one of the following molecules does the central atom obey the octet rule?
A BeCl_{2}
B BF_{3}
C CF_{4}
D $\quad \mathrm{SF}_{6}$

3 Which one of the following statements about iodine is not correct?
A It has a molecular covalent structure.
B It contains non-polar molecules.
C It exists as a grey-black shiny solid.
D It is more soluble in water than hexane.

4 Elements Q and R have ground state electron structures $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ and $1 s^{2} 2 s^{2} 2 p^{5}$ respectively. Q and R combine to produce a compound with the formula

A QR
B $Q R R_{2}$
C $Q_{2} R$
D $Q_{2} R_{5}$

5 Which one of the following molecules is polar?
A BF_{3}
B $\quad \mathrm{CF}_{4}$
C OF_{2}
D F_{2}
64.88 g of hydrated barium chloride, $\mathrm{BaCl}_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$, was heated to a constant mass of 4.16 g . What is the value of x ?

A 1
B 2
C 3
D 4

7 Which one of the following represents the emission spectrum of atomic hydrogen in the ultraviolet region?

wavelength \qquad

D

wavelength \longrightarrow

8 When burned in a plentiful supply of oxygen, propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ produces can water.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

What is the number of molecules of carbon dioxide produced when 4.4 g of propane are burned?

A 6.02×10^{22}
B 1.81×10^{23}
C 6.02×10^{23}
D 1.81×10^{24}

9 A compound produces a lilac colour in a flame test. When chlorine is bubbled into an aqueous solution of the compound, the solution changes from colourless to yellow-orange. The compound is

A potassium bromide
B potassium iodide
C sodium bromide
D sodium iodide

10 Iron(III) oxide can be reduced by carbon to form iron.

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

What is the maximum mass of iron which can be produced when 3.20 kg of iron(III) oxide is heated with 0.72 kg of carbon?

A 1.12 kg
B $\quad 2.24 \mathrm{~kg}$
C $\quad 3.36 \mathrm{~kg}$
D 4.48 kg

Section B

Answer all five questions in this section.
11 There are five isotopes of germanium.
(a) Atoms of the ${ }^{74} \mathrm{Ge}$ isotope contain 32 protons, 32 electrons and 42 neutrons. Complete the following table which shows the properties of each of these particles.

Particle	Relative mass	Relative charge
Proton		
Electron		
Neutron		

(b) State, in terms of protons and neutrons, the meanings of the following terms:

Mass number \qquad
\qquad
Atomic number \qquad
\qquad
Isotopes \qquad
\qquad
(c) The terms atomic number and mass number can be used to deduce the numbers of protons, neutrons and electrons in an atom or ion.
(i) An atom has 15 protons and 20 neutrons fewer than there are in the ${ }^{70} \mathrm{Ge}$ isotope. Deduce the symbol and mass number of this atom.

Symbol \qquad Mass Number \qquad
(ii) Complete the table for the ions of the elements X, Y and Z . The letters X, Y and Z are not the symbols of the elements.

Ion	Atomic Number	Mass Number	Number of Neutrons	Electronic Structure
X^{2+}			20	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
Y^{-}			18	$1 \mathrm{~s}^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
Z^{2-}		16		$1 s^{2} 2 s^{2} 2 p^{6}$

(d) The mass spectrum of germanium is used to calculate its relative atomic mass.
(i) Define the term relative atomic mass.
\qquad
\qquad
(ii) The table below gives the percentage abundance of each isotope in the mass spectrum of germanium.

Relative Isotopic Mass	70	72	73	74	76
\% Abundance	20.55	27.37	7.67	36.74	7.67

Use this information to calculate the relative atomic mass of germanium to one decimal place.
\qquad
\qquad
\qquad

12 Phosphorus and nitrogen are in Group V of the Periodic Table. Nitrogen forms a hydride called ammonia and the hydride of phosphorus is called phosphine, PH_{3}.
(a) (i) Draw a dot and cross diagram to show the bonding in phosphine.
(ii) Draw and name the shape of a phosphine molecule.
(iii) Explain why a phosphine molecule has the shape you have drawn.
\qquad
\qquad
\qquad
\qquad
(iv) Suggest a value for the bond angles in phosphine. Explain your answer.
\qquad
\qquad
\qquad
\qquad
(b) Phosphine reacts with hydrogen ions to form phosphonium ions, $\mathrm{PH}_{4}{ }^{+}$. Ammonia similarly forms ammonium ions, $\mathrm{NH}_{4}{ }^{+}$.
(i) Name the type of bond formed when phosphine reacts with a hydrogen ion.
\qquad
(ii) Explain how this bond is formed.
\qquad
\qquad
(c) Suggest, in terms of intermolecular forces, why ammonia has a higher boiling point than phosphine.
\qquad
\qquad
\qquad
\qquad

13 Analysis of a vinegar solution was carried out using the following procedure:

Transfer $25.0 \mathrm{~cm}^{3}$ of undiluted vinegar into a $250 \mathrm{~cm}^{3}$ volumetric flask and make the solution up to the mark using de-ionised water. Transfer $25.0 \mathrm{~cm}^{3}$ portions of the diluted vinegar into three separate conical flasks and add a few drops of indicator to each flask. Titrate each solution with $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide until an end point is reached.

A student obtained the following results:

	Initial burette reading (cm $\mathbf{3}$	Final burette reading $\left(\mathbf{c m}^{\mathbf{3}}\right)$	Titre (cm $\left.{ }^{\mathbf{3}}\right)$
Rough	0.0	21.7	21.7
1st accurate	21.7	43.1	
2nd accurate	0.0	21.3	

(a) (i) Name a suitable indicator for this titration.
\qquad
(ii) State the colour change which would be obtained at the end point.
from \qquad to
(b) (i) Write the equation for the reaction between vinegar (ethanoic acid) and sodium hydroxide.
\qquad
(ii) Complete the results table and calculate the average titre.
\qquad
(iii) Use the average titre to calculate the number of moles of sodium hydroxide used in the titration.
\qquad
(iv) Calculate the concentration of ethanoic acid in the diluted vinegar.
(v) Calculate the concentration of ethanoic acid in the undiluted vinegar.
\qquad
(c) Describe, giving practical details, how you would prepare the solution of diluted vinegar and then transfer $25.0 \mathrm{~cm}^{3}$ to a conical flask.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

14 Ionisation energies provide evidence for the existence of shells and subshells in atoms.
(a) State the meaning of the term first ionisation energy of an element.
\qquad
\qquad
(b) There is a general increase in the first ionisation energies across

Period 3. The graph below shows the variation of the first ionisation energies of some of the elements in Period 3.

(i) Use crosses to mark the relative positions of the first ionisation energies for the elements Mg, Al and P . Complete the graph by joining the crosses.
(ii) Explain the general increase in first ionisation energy across the
\qquad
\qquad
(iii) Using s, p and d notation give the ground state electronic configuration of a magnesium atom.
\qquad

Abstract

period.

(iv) Explain the position of the first ionisation energy of magnesium relative to that of aluminium in your graph.
\qquad
\qquad
(c) The first four ionisation energies of aluminium are 578, 1817, 2745 and $11578 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(i) Label the subshells in the following diagram for an aluminium atom and use the electrons-in-boxes notation to show how the electrons are arranged in the Al^{2+} ion.

(ii) Write the equation, including state symbols, for the fourth ionisation energy of aluminium.
\qquad
(iii) Explain why the third ionisation energy of aluminium is much smaller than the fourth ionisation energy.
\qquad
\qquad

15 The elements in Group VII are all reactive non-metals.
(a) There is a trend in the electronegativity of the elements in Group VII.
(i) Define the term electronegativity.
\qquad
\qquad
\qquad
(ii) State and explain the trend in the electronegativity of the elements down Group VII from fluorine to iodine.
\qquad
\qquad
\qquad
\qquad
(b) When concentrated sulphuric acid is added to solid sodium bromide, the acid reacts with bromide ions to form sulphur dioxide and bromine.
(i) State the change in the oxidation number of sulphur in this reaction.
\qquad
(ii) Write the half-equation to show how bromine is formed from bromide ions.
\qquad
(iii) Complete the half-equation to show how sulphur dioxide is formed from sulphuric acid.
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}^{+} \quad \rightarrow \quad \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(iv) Write the overall ionic equation for the reaction of bromide ions with sulphuric acid.
(v) State one observation in the above reaction.
\qquad
(vi) State the role of bromide ions in this reaction.
\qquad
(vii) Why are sulphur dioxide and chlorine not formed when concentrated sulphuric acid is added to solid sodium chloride?
\qquad
\qquad
(viii) Write the equation for the reaction of solid sodium chloride with concentrated sulphuric acid.
\qquad
(c) When sodium bromide is dissolved in water, the presence of bromide ions can be established by using aqueous silver nitrate followed by concentrated ammonia solution.
(i) What is observed when aqueous silver nitrate is added to sodium bromide solution?
\qquad
(ii) Write the ionic equation, including state symbols, for the reaction.
\qquad
(iii) What is observed when an excess of concentrated ammonia solution is added?

Permission to reproduce all copyright material has been applied for In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

