

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009

Chemistry

Assessment Unit AS 3

assessing Module 3: Practical Examination 2

[ASC32]

FRIDAY 15 MAY, MORNING

TIME

2 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Answer **all four** questions. Write your answers in the spaces provided.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Questions 1 and 2 are practical exercises each worth 25 marks.

Question 3 is a planning exercise worth 20 marks.

Question 4 is a written question testing aspects of experimental chemistry worth 20 marks.

You may have access to notes, textbooks and other materials to assist you.

A Periodic Table of Elements (including some data) is provided.

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
Total Marks		

StudentBounty.com

1 **Observation/deduction**

Safety goggles must be worn at all times and care should be exercised during this examination.

Answer parts (a) and (b) of question 1.

StudentBounty.com (a) You are provided with a mixture of two salts, labelled Y, which have a common anion. Carry out the following experiments on Y. Record your observations and deductions in the spaces below and identify the two salts.

	Experiment	Observations	Deductions
(i)	Describe the appearance of Y.		
(ii)	Make a solution of Y by dissolving a half spatula-measure of Y in a test tube half full of water. Place 1 cm^3 of this solution in a test tube with 1 cm^3 of dilute nitric acid and 1 cm^3 of silver nitrate solution. Add 2 cm^3 of dilute ammonia solution to the test tube.		
(iii)	 Place a half spatula-measure of Y on a watch-glass and add 3 drops of concentrated hydrochloric acid. Use a clean loop of nichrome wire to place a small amount of this acidified sample of Y in a blue Bunsen flame. 		
(iv)	Place a spatula-measure of Y in a test tube and add 2 cm^3 of dilute sodium hydroxide solution and warm gently. Test any gas evolved with damp Universal Indicator paper.		

Name the **two** salts in Y _____

(b) You are supplied with three halobutanes labelled P, Q and R. Carry out and complete the table below. Identify P, Q and R.

Experiment	Observations	Deductions
Place 1 cm^3 of P, Q and R separately in three test tubes. Label the test tubes with their contents. Add 1 cm^3 of ethanol and 1 cm^3 of silver nitrate solution to each test tube. Place the three test tubes in a beaker of water heated to just below boiling point. Leave for	P Q R	P Q R
5 minutes.		

2 Titration

(a) You are provided with:

sodium hydroxide solution, 0.1 mol dm⁻³ vinegar solution of unknown concentration phenolphthalein indicator

You are required to:

- (i) titrate the vinegar solution against the sodium hydroxide solution using phenolphthalein as indicator;
- (ii) use your results to determine the concentration of the vinegar.

Procedure

- Rinse out a pipette with the vinegar solution.
- Using the pipette and pipette filler, place 25.0 cm³ of the vinegar solution in the conical flask.
- Rinse out a burette with the sodium hydroxide solution.
- Fill the burette with the sodium hydroxide solution.
- Add 2 or 3 drops of phenolphthalein indicator to the conical flask, and titrate until the end point is reached.
- Record the results of one rough and two accurate titrations in the table.

Results

	Initial burette reading/cm ³	Final burette reading/cm ³	Titre/cm ³
Rough			
1st accurate			
2nd accurate			

 $_{\rm cm^3}$ Average titre _____

StudentBounty.com

Examiner Only

Marks Remark

4 www.StudentBounty.com Homework Help & Pastpaper

	from to [1]	180	Hark
	[*]	1	25
(ii)	Calculate the number of moles of sodium hydroxide used in the titration.		
	[2]		
(iii)	Write the equation for the reaction of sodium hydroxide with ethanoic acid, CH ₃ COOH.		
	[2]		
(iv)	Deduce the number of moles of ethanoic acid present in $25.0 \mathrm{cm}^3$ of the vinegar solution.		
	[1]		
(v)	Calculate the number of moles of ethanoic acid present in 1dm^3 of the vinegar solution.		
	[2]		
(vi)	Convert your value of moles of ethanoic acid calculated in (v) into grams of ethanoic acid.		
	[2]		
(vi)	Convert your value of moles of ethanoic acid calculated in (v) into grams of ethanoic acid[2]		

۰.

[Turn over

3 Planning

You are required to plan an experiment to determine the empirical formula of an o titanium by heating titanium in a stream of oxygen. You are provided with the follow apparatus:

An appropriate procedure would involve:

- measuring the mass of the ceramic container plus titanium, •
- passing oxygen gas over the heated titanium,
- allowing the apparatus to cool,
- measuring the mass of the titanium oxide remaining after the reaction.

	titanium used.	nark nry-c
1	To ensure that the titanium has reacted completely, the ceramic container holding the titanium can be weighed, heated again and reweighed. What result would be expected?	
	[1]	
	Hot titanium reacts with water vapour to produce titanium oxide and hydrogen.	
	(i) Explain how the presence of water vapour in the oxygen gas would affect the results of the experiment.	
	[1]	
	(ii) Suggest how you could modify the apparatus to remove any traces of water vapour from the oxygen supply.	
	[1]	
	At the end of the experiment, the heat was removed, but oxygen was left to flow over the titanium oxide before it was weighed. Suggest one reason why this procedure was carried out.	
	[1]	

	- Ella	14
		.6
	[3]	
This experiment can be used to determine the formulae o oxides.	of other metal	
(i) Name one other metal that could be used.		
	[1]	
(ii) Name one metal that cannot be used.		
	[1]	
(iii) Explain why the metal chosen in part (ii) cannot be u	used.	
	[1]	

StudentBounts.com 4 Ethanoyl chloride, CH₂COCl, is a colourless liquid (boiling point 52 °C) with a pungent smell. It is readily hydrolysed to form ethanoic acid and hydrogen chloride. Ethanoyl chloride may be prepared by the action of phosphorus trichloride, PCl₃, on glacial (pure) ethanoic acid as described below.

 $3CH_3COOH + PCl_3 \rightarrow 3CH_3COCl + H_3PO_3$

Place 10 cm^3 of glacial ethanoic acid in a flask and set up the apparatus below.

Add $5 \, cm^3$ of phosphorus trichloride dropwise. Once addition is complete, *heat the mixture to* 80–90 °*C until distillation ceases.* Transfer the distillate to a clean flask and redistil, collecting the fraction between 50–55 °C. Store the ethanoyl chloride in a dry, stoppered bottle.

- (a) Phosphorus trichloride undergoes rapid hydrolysis, fuming in moist air to form phosphorous acid, H₃PO₃, and hydrogen chloride.
 - (i) Explain the term **hydrolysis**. [2] (ii) Write the equation for the hydrolysis of phosphorus trichloride. [2] (iii) Suggest why the preparation of ethanoyl chloride should be carried out in a fume cupboard.

[1]

i) A student used 10 cm^3 of ethanoic acid in this protection the density of ethanoic acid is 1.05 g cm^{-3} , calcul ethanoic acid used.	eparation. If ate the mass of
i) Calculate the number of moles of ethanoic acid u	ised.
ii) Calculate the relative molecular mass of ethanoy	[1]
iv) Calculate the maximum mass of ethanoyl chlorid made from 10 cm ³ of ethanoic acid.	le which could be
	[1]
v) The percentage yield was found to be 84%. Calcue thanoyl chloride obtained.	ulate the mass of
	[2]
Both ethanoic acid and ethanoyl chloride react with a produce esters. Compare these esterification reaction quilibrium and kinetic considerations.	llcohols ons using
	 i) A student used 10 cm³ of ethanoic acid in this pr the density of ethanoic acid is 1.05 g cm⁻³, calcul ethanoic acid used. iii) Calculate the number of moles of ethanoic acid u iii) Calculate the relative molecular mass of ethanoy iv) Calculate the maximum mass of ethanoyl chloric made from 10 cm³ of ethanoic acid. v) The percentage yield was found to be 84%. Calc ethanoyl chloride obtained. Both ethanoic acid and ethanoyl chloride react with a produce esters. Compare these esterification reactiquilibrium and kinetic considerations.

www.StudentBounty.com Homework Help & Pastpapers

www.StudentBounty.com Homework Help & Pastpapers

www.StudentBounty.com Homework Help & Pastpapers

