

Rewarding Learning
ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009

Chemistry

Assessment Unit AS 1
 assessing
 Module 1: Basic Concepts in Physical and Inorganic Chemistry

[AC111]

WEDNESDAY 3 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all seventeen questions.
Answer all ten questions in Section A. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10 . Keep in sequence when answering. Answer all seven questions in Section B. Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.
Quality of written communication will be assessed in question 16(a)(i).
In Section A all questions carry equal marks, i.e. two marks for each question.
In Section B the figures in the brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A Periodic Table of Elements (including some data) is provided.

For Examiner's use only	
Question Number	Marks
Section A	
$1-10$	
Section B	
11	
12	
13	
14	
15	
16	
17	

Total Marks	

Section A

For each of the following questions only one of the lettered responses $(A-D)$ is col
Select the correct response in each case and mark its code letter by connecting the as illustrated on the answer sheet

1 How many electrons are present in a potassium ion, K^{+}?
A 18
B 19
C 20
D 39

2 Which one of the following represents the first five ionisation energies in $\mathrm{kJ} \mathrm{mol}^{-1}$ of an s-block element?

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
A	580	1800	2700	11600	14800
B	740	1500	7700	10500	13600
C	1000	2300	3400	4600	7000
D	14800	11600	2700	1800	580

3 A sample of 4.64 g of hydrated sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$, was dissolved in $1 \mathrm{dm}^{3}$ of water. $25.0 \mathrm{~cm}^{3}$ of this solution required $20.0 \mathrm{~cm}^{3}$ of $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid for neutralisation. Which one of the following is the value of x ?

A 0.5
B 5
C 7
D 13

4 Which one of the following contains a coordinate bond?
A Ammonium, NH_{4}^{+}
B Boron trifluoride, BF_{3}
C Sulphur hexafluoride, SF_{6}
D Water, $\mathrm{H}_{2} \mathrm{O}$

5 Which one of the following lists the colour of solid iodine and of iodine dis solvent stated?

	Solid	Water	Hexane
A	grey/black	purple	yellow/brown
B	dark purple	yellow/brown	purple
C	yellow/brown	grey/black	yellow/brown
D	grey/black	yellow/brown	purple

6 Which one of the following does not show the number of each bond present in the named molecules?

	Molecule	Single bond	Double bond	Triple bond
A	Ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$	2	1	0
B	Nitrogen, N_{2}	0	0	1
C	Carbon dioxide, CO_{2}	0	2	0
D	Beryllium chloride, BeCl_{2}	2	0	0

7 In which one of the following molecules does the named element have two lone pairs of electrons?

A Beryllium in BeCl_{2}
B Carbon in CH_{4}
C Nitrogen in NH_{3}
D Oxygen in $\mathrm{H}_{2} \mathrm{O}$

8 Using the half-equations below, which one of the following is the balancea for the reaction between acidified manganate(VII) ions and ethanedioate ions

Acidified manganate(VII) ions:

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

Ethanedioate ions:

$$
\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}
$$

A $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$
B $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$
C $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$
D $5 \mathrm{MnO}_{4}^{-}+40 \mathrm{H}^{+}+2 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 5 \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}$

9 Which one of the following molecules is non-polar?
A Ammonia, NH_{3}
B Carbon dioxide, CO_{2}
C Hydrogen fluoride, HF
D Water, $\mathrm{H}_{2} \mathrm{O}$

10 The extraction and purification of uranium from its ore involves the following reaction between uranium(IV) fluoride and magnesium.

$$
2 \mathrm{Mg}+\mathrm{UF}_{4} \rightarrow \mathrm{U}+2 \mathrm{MgF}_{2}
$$

What mass of uranium can be extracted from 500 tonnes of uranium(IV) fluoride and 50 tonnes of magnesium?

A 192 tonnes
B 246 tonnes
C 379 tonnes
D 495 tonnes

Section B

Answer all seven questions in this section

11 (a) Complete the table naming the strongest intermolecular force between molecules in each of the following liquids.

Liquid	Intermolecular force
Ammonia, $\mathrm{NH}_{3}(\mathrm{I})$	
Hydrogen chloride, $\mathrm{HCl}(\mathrm{I})$	
Methane, $\mathrm{CH}_{4}(\mathrm{I})$	

(b) Explain why ice has a lower density than water.
\qquad
\qquad
\qquad
(c) Draw and explain the shape of an ammonia molecule.
\qquad
\qquad
\qquad

12 Neon has several isotopes.
(a) Complete the table below.

	Number of protons	Number of electrons	Number of neutrons
Neon-20			
Neon-21			
Neon-22			

(b) The table below gives the abundance of each isotope of neon.

Calculate the relative atomic mass of neon to two decimal places.

Isotope	\% abundance
Neon-20	90.92
Neon-21	0.26
Neon-22	8.82

\qquad
\qquad
\qquad
(c) Name the isotope used as the standard to compare the relative atomic mass of atoms.
\qquad
(d) Label the sub-shells below and draw the electronic structure of neon in the ground state.

(e) Draw the shape of an s and of a p orbital.
s orbital
p orbital
[2]

13 The percentage of calcium carbonate present in egg shells can be found by back titration using excess hydrochloric acid and standard sodium hydroxide solution.
(a) Write an equation for the reaction between calcium carbonate and hydrochloric acid.
(b) Explain what is meant by a standard solution.
\qquad
\qquad
(c) 1.12 g of an egg shell was reacted with $20.0 \mathrm{~cm}^{3}$ of 2 M hydrochloric acid and the solution formed made up to $250 \mathrm{~cm}^{3}$ in a volumetric flask. $25.0 \mathrm{~cm}^{3}$ of this solution completely reacted with $18.6 \mathrm{~cm}^{3}$ of 0.1 M sodium hydroxide.

Calculate the percentage of calcium carbonate in the egg shell using the headings below.

Moles of hydrochloric acid added to the egg shell
\qquad
Moles of sodium hydroxide used
\qquad
Moles of hydrochloric acid in $250 \mathrm{~cm}^{3}$
\qquad
Moles of hydrochloric acid which reacted with the egg shell

Mass of calcium carbonate in the egg shell
\qquad
Percentage of calcium carbonate in the egg shell
(d) Name a suitable indicator for the titration of hydrochloric acid with sodium hydroxide solution. Give the colour change observed at the end point.

Indicator: \qquad

Colour change:
from \qquad to \qquad

14 The Periodic Table identifies various relationships between elements.
(a) (i) What property is used to order the elements in the Periodic Table?
\qquad
(ii) Explain why transition metals are classified as d-block elements.
\qquad
(b) A number of distinct trends can be seen in the 3rd period from sodium to argon.
(i) Describe the change in melting point across this period.
\qquad
\qquad
\qquad
(ii) Describe and explain the change in atomic radius across this period.
\qquad
\qquad
\qquad
(iii) On the axes below sketch the change in the 1st ionisation energy across the 3rd period.

BLANK PAGE

(Questions continue overleaf)

15 (a) Diamond and graphite have giant covalent structures.
(i) Explain what is meant by the term covalent.
\qquad
(ii) Describe the structures of diamond and graphite.

Diamond: \qquad
\qquad
\qquad
Graphite: \qquad
\qquad
\qquad
(iii) Explain why graphite conducts electricity.
\qquad
\qquad
\qquad
(iv) Explain why diamond is exceptionally hard.
\qquad
\qquad
(b) Carbon dioxide, CO_{2}, and beryllium chloride, BeCl_{2}, are both covalent compounds.
(i) Draw dot and cross diagrams for carbon dioxide and for beryllium chloride.

carbon dioxide
beryllium chloride

(ii) State the octet rule and explain why beryllium chloride does not obey it.
\qquad
\qquad
\qquad

16 Rock salt, impure sodium chloride, is found in large underground deposits at Kilroot.
(a) (i) Describe how you would carry out chemical tests used to show that solid rock salt contains sodium chloride.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication
(ii) Draw dot and cross diagrams to show how sodium chloride is formed from sodium and chlorine atoms.
(b) Chlorine is manufactured by the electrolysis of concentrated sodium chloride solution.
(i) Explain why sodium chloride solution conducts electricity but solid sodium chloride does not.
\qquad
\qquad
(ii) Household bleach is manufactured by reacting chlorine with sodium hydroxide solution.

$$
\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}
$$

Using oxidation numbers, explain why this reaction is described as disproportionation.
\qquad
\qquad
\qquad
(iii) Describe what you would observe when chlorine is bubbled through a solution of potassium bromide.
\qquad
\qquad
\qquad
(iv) Write an ionic equation for the reaction of chlorine with potassium bromide.
\qquad
(c) Concentrated sulphuric acid reacts with sodium halides to form the corresponding hydrogen halide.
(i) Write an equation for the reaction of concentrated sulphuric acid with sodium chloride.
\qquad
(ii) Give two observations when concentrated sulphuric acid is added to sodium iodide.
\qquad
\qquad

17 The electronic structure of atoms has been interpreted from analysis of emission spectra.

The diagram below shows the emission spectrum of hydrogen in the ultraviolet region.

(a) Draw the electron transition responsible for the line at 122 nm .

$$
\mathrm{n}=4
$$

\qquad

$$
\mathrm{n}=3
$$

\qquad

$$
n=2
$$

\qquad

$$
\mathrm{n}=1
$$

\qquad
(b) Explain what is meant by the convergence limit.
(c) The convergence limit can be used to calculate the ionisation energy for hydrogen.
(i) Write an equation, including state symbols, for the ionisation of atomic hydrogen.
\qquad
(ii) Use the information below to calculate the frequency of the line at the convergence limit.
(speed of light $=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}, 1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}$)

$$
\text { speed of light }=\text { frequency } \times \text { wavelength }
$$

\qquad
\qquad
(iii) Use this frequency value to calculate the energy required to ionise one mole of hydrogen atoms.

Energy required to ionise one hydrogen atom
\qquad

Energy required to ionise one mole of hydrogen atoms in kJmol^{-1}
\qquad

