

ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2009

Chemistry

Assessment Unit AS 1

assessing Basic Concepts in Physical and Inorganic Chemistry

[AC111]

FRIDAY 16 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer all sixteen questions.

Answer **all ten** questions in **Section A**. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10. Keep in sequence when answering. Answer **all six** questions in **Section B**. Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.

Quality of written communication will be assessed in question **16(a)(iii)**. In Section A all questions carry equal marks, i.e. **two** marks for each question.

In Section B the figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A Periodic Table of Elements (including some data) is provided.

For Examiner's use only					
Question Number	Marks				
Sect	ion A				
1–10					
Section B					
11					
12					
13					
14					
15					
16					
Total					

Marks

StudentBounty.com

Section A

For each of the following questions only **one** of the lettered responses (A - D) is con-

StudentBounty.com Select the correct response in each case and mark its code letter by connecting the as illustrated on the answer sheet

Which one of the following represents the p electrons in an oxide, O^{2-} ion? 1

- Which one of the following represents the electronic configuration for a chromium atom in 2 its ground state?
 - 1s² 2s² 2p⁶ 3s² 3p⁶ 3d³ А
 - 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ В
 - 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s¹ С
 - 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁴ 4s² D
- Which one of the following represents the line emission spectrum of atomic hydrogen? 3

2 www.StudentBounty.com nework Help & I

- 4 The intermolecular forces of attraction in solid iodine are
 - A covalent bonds.
 - B hydrogen bonds.
 - C permanent dipole attractions.
 - D van der Waals forces.
- 5 Which one of the following molecules contains the most polar bond?
 - A CH₄
 - B NH₃
 - C H₂Ŏ
 - D HF
- 6 The graph below represents the variation in the first ionisation energy with atomic number.

atomic number

The elements indicated by the letters P, Q, R and S are

- A alkali metals.
- B halogens.
- C noble gases.
- D transition metals.

StudentBounts.com

- The melting point of the elements going across the Periodic Table from soch the periodic Table from soc 7
- How many moles of hydrogen ions are present in 40 cm³ of 0.2 M sulphuric acid? 8
 - 8 x 10⁻³ А
 - 1.6 x 10⁻² В
 - С 0.2
 - D 0.4
- 9 In which one of the following do both molecules obey the octet rule?
 - А BeCl₂ and NH₃
 - BF_3 and CH_4 В
 - CH_4 and NH_3 С
 - BF₃ and BeCl₂ D
- 10 Phosphoric acid is manufactured by the reaction of sulphuric acid with calcium phosphate according to the equation:

 $3H_2SO_4$ + $Ca_3(PO_4)_2 \rightarrow 2H_3PO_4$ + $3CaSO_4$

What mass of phosphoric acid would be obtained from reacting 60 kg of sulphuric acid with 60 kg of calcium phosphate?

- А 19 kg
- В 38 kg
- С 40 kg
- D 60 kg

StudentBounty.com **12 (a)** Metal ions can be identified by the characteristic flame colour observed when their solutions are sprayed into a blue Bunsen flame.

Complete the table by stating the flame colour for each of the ions listed.

Metal ion	Flame colour
Ba ²⁺	
Ca ²⁺	
Cu ²⁺	

[3]

(b) Explain, with the help of an energy level diagram, how flame colours arise.

		[3]
	Flame colours are a consequence of the emission spectrum of an element.	
	Explain how the emission spectrum can be used to calculate the first ionisation energy of an element.	
-		[2]

by t solu	sning the fo ution	g soda is hydrated sodium carbonate and can be represented ormula $Na_2CO_3.xH_2O$. The value of x can be found by titrating a of washing soda against standard hydrochloric acid solution.	THE TRACE
(a)	(i)	What is meant by the term standard solution?	Suptra C
			[1]
	(ii)	Write the equation for the reaction between sodium carbonate, Na_2CO_3 , and excess hydrochloric acid.	
			[2]
(b)	In o to 2 requ the	one experiment a 2.80 g sample of washing soda was made up 250 cm^3 of solution in a volumetric flask. 25 cm^3 of this solution uired 22.4 cm ³ of 0.1 M hydrochloric acid for neutralisation. Find value of x using the following headings.	
	Mol	es of hydrochloric acid used	
	Mol	es of sodium carbonate in 25 cm ³	
	Mol	es of sodium carbonate in the sample	
	Mas	ss of sodium carbonate in the sample	
	Mas	ss of water in the sample	
	Mol	es of water in the sample	
	Valu	ue of x	
			[5]
(c)	Sug exp	ggest a suitable indicator for the titration, stating the colour chang ected.	ge
	Indi	cator:	
	Col	our change: from to	[3]

BLANK PAGE

				SEU			
14	(a)	Mag hea the of c Mag chlo	gnesium is extracted from dolomite, MgCO ₃ .CaCO ₃ . Dolomite is ted to form the metal oxides and carbon dioxide. After purification magnesium oxide is heated with coke (carbon) in a stream hlorine to form magnesium chloride and carbon monoxide. gnesium is formed by the electrolysis of molten magnesium oride.	on	ontBo	r Only mark	Com
		(i)	Write the equation for the effect of heat on dolomite.				
				[2]			
		(ii)	Write the equation for the formation of magnesium chloride fro magnesium oxide.	m			
				[2]			
		(iii)	Magnesium chloride is ionic. Explain why it must be molten for the electrolysis to take place.				
				[1]			
		(iv)	Draw dot and cross diagrams to show the formation of magnesium and chlorine atoms from their ions.				
				[4]			

[Turn over

- 15 Xenon was first isolated by Ramsey and Travers in 1898.
 - (a) Xenon makes up 1 part in 20000000 by volume of air.

StudentBounty.com Calculate the number of atoms of xenon in 1 dm³ of air at room temperature and pressure using the following headings.

Molar gas volume = 24 dm^3 at room temperature and pressure.

Number of moles in 1 dm³ of air.

Number of particles (atoms and molecules) in 1 dm³ of air.

Number of atoms of xenon in 1 dm³ of air.

_ [3]

(b) Xenon has a number of naturally occurring isotopes. The table lists the principal isotopes of xenon.

Relative isotopic mass	% abundance
129	27
131	23
132	28
134	12
136	10

(i) Explain what is meant by the term **isotope**.

[2]

(ii) Use the information in the table to calculate the relative atomic mass of xenon.

_ [2]

StudentBounty.com (c) The first compounds of xenon were isolated by Bartlett in 1962. The reaction between the hydrogenxenate and hydroxide ions can be represented as follows: 20H⁻ + 2HXeO₄⁻ \rightarrow Xe + 2H₂O + XeO₆⁴⁻ + O₂ (i) Deduce the oxidation number of xenon in each of the following. HXeO₄⁻_____ Xe XeO₆^{4–}_____ [3] (ii) Explain why this is considered to be a disproportionation reaction. ___[2]

- 16 The halogens are found in Group VII of the Periodic Table.
 - (a) (i) Complete the table.

				-
The halogens a (a) (i) Comple	re found in Grou ete the table.	up VII of the Pe	riodic Table.	
	Fluorine	Chlorine	Bromine	lodine
Atomic number	9	17	35	53
Appearance at 20 °C	Yellow gas	Green-yellow gas		
Boiling point (°C)	-188	-35	59	183
Electro- negativity	4.1	2.9	2.8	2.2

[2]

_____[2]

(ii) Explain the change in boiling point of the halogens.

(iii) State what is meant by the term electronegativity and explain the trend for the halogens.

_ [3]

[2]

Quality of written communication

(b)	Chlo chlo sodi	prine reacts with cold dilute sodium hydroxide to form sodium prate(I) and with hot concentrated sodium hydroxide to form fum chlorate(V).	Control of the second s
	(i)	Write the equation for the reaction of chlorine with cold dilute sodium hydroxide.	Int.
			[2]
	(ii)	What is the formula of sodium chlorate(V)?	
			[1]
(c)	lodi	ne is more soluble in hexane than in water.	
	(i)	Explain why iodine is more soluble in hexane.	
			[2]
	(ii)	What colour is a solution of iodine in hexane?	
			[1]
(d)	The sulp	hydrogen halides can be formed by the reaction of concentrate huric acid with the corresponding solid sodium halide.	ed
	(i)	Write the equation for the reaction of concentrated sulphuric ac with solid sodium chloride at room temperature.	sid
			[2]
	(ii)	Name two products, other than hydrogen iodide, which are formed when sodium iodide reacts with concentrated sulphuric acid.	
			[2]
	(iii)	State and explain the trend in thermal stability of the hydrogen halides.	
			-

[Turn over

- (e) The presence of halide ions can be detected using silver ions and aqueous ammonia.
- StudentBounty.com (i) Write the ionic equation for the reaction between silver ions and chloride ions.

(ii) Complete the table below.

Halida ian	Colour of silver salt	Effect of adding aqueous ammonia			
		dilute	concentrated		
Chloride					
Bromide					
lodide					

[3]

____[2]

(f) Explain why the public water supply may be fluoridated and why some people are opposed to this.

THIS IS THE END OF THE QUESTION PAPER

www.StudentBounty.com Homework Help & Pastpapers

www.StudentBounty.com Homework Help & Pastpapers

www.StudentBounty.com Homework Help & Pastpapers

