AQA

A-level
CHEMISTRY
(7405/2)
Paper 2: Organic and Physical Chemistry
Mark scheme
Specimen paper

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Question	Marking guidance	Mark	AO	Comments
01.1	Consider experiments 1 and 2: [B constant] $[A]$ increases $\times 3$: rate increases by 3^{2} therefore $2 n d$ order with respect to A Consider experiments 2 and 3 : $[A]$ increases $\times 2$: rate should increase $\times 2^{2}$ but only increases $\times 2$ Therefore, halving $[B]$ halves rate and so 1st order with respect to B Rate equation: rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$	1 1 1	AO3 1a AO3 1a AO3 1b	
01.2	rate $=k[C]^{2}[D]$ therefore $k=$ rate $/[C]^{2}[D]$	1	AO2h	
	$k=\frac{7.2 \times 10^{-4}}{\left(1.9 \times 10^{-2}\right)^{2} \times\left(3.5 \times 10^{-2}\right)}=57.0$	1	AO2h	Allow consequential marking on incorrect transcription
	$\mathrm{mol}^{-2} \mathrm{dm}^{+6} \mathrm{~s}^{-1}$	1	AO2h	Any order
01.3	$\text { rate }=57.0 \times\left(3.6 \times 10^{-2}\right)^{2} \times 5.4 \times 10^{-2}=3.99 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ OR Their $k \times\left(3.6 \times 10^{-2}\right)^{2} \times 5.4 \times 10^{-2}$	1	AO2h	

01.4	Reaction occurs when molecules have $E \geq E_{\mathrm{a}}$ Raising T by $10^{\circ} \mathrm{C}$ causes many more molecules to have this E Whereas doubling [E] only doubles the number with this E	1 1 1	A01a A01a A01a	
01.5	$E_{\mathrm{a}}=R T(\ln A-\ln k) / 1000$ $E_{\mathrm{a}}=8.31 \times 300(23.97-(-5.03)) / 1000=72.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	1	A01b A01b	Mark is for rearrangement of equation and factor of 1000 used correctly to convert J into kJ

02.2				Extended response
	Stage 1: Rate of reaction when concentration $=0.0120 \mathrm{~mol} \mathrm{dm}^{-3}$			
	From the tangent			
	Change in [butadiene] $=-0.0160-0$ and change in time $=7800-0$ Gradient $=-(0.0160-0) /(7800-0)=-2.05 \times 10^{-6}$	1	AO3 1a	
	Rate $=2.05 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$	1	AO3 1a	
	Stage 2: Comparison of rates and concentrations Initial rate/rate at $0.0120=\left(4.57 \times 10^{-6}\right) /\left(2.05 \times 10^{-6}\right)=2.23$	1	AO3 1a	Marking points in stage 2 can be in either order
	Inital concentration/concentration at point where tangent drawn $=$ $0.018 / 0.012=1.5$	1	AO3 1a	
	Stage 3: Deduction of order			
	If order is 2 , rate should increase by factor of $(1.5)^{2}=2.25$ this is approximately equal to 2.23 therefore order is 2 nd with respect to butadiene	1	AO3 1b	

Question	Marking guidance	Mark	AO	Comments
03.1	2,2,4-trimethylpentane	1	AO1a	
03.2	5	1	AO2b	
03.3	$\mathrm{C}_{20} \mathrm{H}_{42} \longrightarrow \mathrm{C}_{8} \mathrm{H}_{18}+2 \mathrm{C}_{3} \mathrm{H}_{6}+3 \mathrm{C}_{2} \mathrm{H}_{4}$	1	AO2b	
03.4	Mainly alkenes formed	1	AO1b	
03.5	4 (monochloro isomers)	1 1	AO2b AO2a	
03.6		1	AO2a	

03.7	$\begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{17}{ }^{35} \mathrm{Cl}=96.0+17.0+35.0=148.0 \\ & \text { and } \mathrm{C}_{8} \mathrm{H}_{17}{ }^{37} \mathrm{Cl}=96.0+17.0+37.0=150.0 \end{aligned}$ M_{r} of this $\left.\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Cl}\left(\frac{1.5}{2.5} \times 148.0\right)+\frac{(1.0}{2.5} \times 150.0\right)=148.8$	1 1	A01b A01b	Both required
03.8	$\begin{aligned} & \frac{24.6}{12} \quad \frac{2.56}{1} \quad \frac{72.8}{35.5}=2.05: 2.56: 2.05 \\ & \text { Simplest ratio }=\frac{2.05}{2.05}: \frac{2.56}{2.05}: \frac{2.05}{2.05} \\ & = \\ & \text { Whole number ratio }(\times 4)=4: 5: 4 \end{aligned}$ $\mathrm{MF}=\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}_{8}$	1 1 1	AO2b AO2b AO2b	

Question	Marking guidance	Mark	AO	Comments
04.1	3-methylbutan-2-ol	1	AO1a	
04.2		1	AO2g	Allow ($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}_{3}$
04.3	Elimination	1	A01a	
04.4		1	AO2g	Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$
		1	AO2g	Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}=\mathrm{CH}_{2}$

04.5	Position	1	AO1a	
04.6	C B A	1	AO3 1b	
04.7		1	AO2g	Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$
04.8		1	AO2e	Allow $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}$

Question	Marking guidance	Mark	AO	Comments
05.1	Secondary	1	AO1a	
05.2	Nitrogen and oxygen are very electronegative Therefore, C=O and N-H are polar Which results in the formation of a hydrogen bond between O and H In which a lone pair of electrons on an oxygen atom is strongly attracted to the $\delta+\mathrm{H}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	A01a AO1a A01a A01a	

Question	Marking guidance	Mark	AO	Comments
06.1		1	AO2a	
06.2		1	AO2a	
06.3	 $\left(\mathrm{Br}^{-}\right)$	1	AO2a	Allow $\begin{equation*} \left(\mathrm{CH}_{3}\right)_{3} \stackrel{+}{\mathrm{N}}-\mathrm{CH}_{2}-\mathrm{COOH} \tag{r} \end{equation*}$
06.4	2-amino-3-hydroxybutanoic acid	1	AO2a	

06.5		1	AO2a

Question	Marking guidance	Mark	AO	Comments
07.1	 Addition	1 1	AO1a A01a	
07.2	 OR	1 1	AO2e AO2e	
07.3	\mathbf{Q} is biodegradable Polar $\mathbf{C}=\mathbf{O}$ group or $\delta+\mathbf{C}$ in \mathbf{Q} (but not in \mathbf{P}) Therefore, can be attacked by nucleophiles (leading to breakdown)	1	AO2g AO2c AO2c	

Question	Marking guidance	Mark	AO	Comments
08.1	2-deoxyribose	1	AO1a	
08.2	Base A	1	AO3 1b	If Base B stated, allow 1 mark only for response including hydrogen bonding
	Top N-H forms hydrogen bonds to lone pair on O of guanine	1	AO2a AO2a	
	The lone pair of electrons on N bonds to H-N of guanine			
	A lone pair of electrons on O bonds to lower H-N of guanine	1	AO2a	Allow all 4 marks for a correct diagram showing the hydrogen bonding Students could also answer this question using labels on the diagram
008.3	Allow either of the nitrogen atoms with a lone pair NOT involved in bonding to cytosine	1	AO2a	
08.4	Use in very small amounts / target the application to the tumour	1	AO2e	

Question	Marking guidance	Mark	AO	Comments
09.1	(nucleophilic) addition-elimination	1	AO1a	Not electrophilic addition-elimination
		4	AO2a	Allow $\mathrm{C}_{6} \mathrm{H}_{5}$ or benzene ring Allow attack by : $\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ M2 not allowed independent of M1, but allow M1 for correct attack on C+ M3 for correct structure with charges but lone pair on O is part of M 4 M4 (for three arrows and lone pair) can be shown in more than one structure

09.2	The minimum quantity of hot water was used: To ensure the hot solution would be saturated / crystals would form on cooling The flask was left to cool before crystals were filtered off: Yield lower if warm / solubility higher if warm The crystals were compressed in the funnel: Air passes through the sample not just round it A little cold water was poured through the crystals: To wash away soluble impurities	1 1 1 1	AO1b AO1b AO1b A01b	Allow better drying but not water squeezed out
09.3	Water Press the sample of crystals between filter papers	1 1	AO3 1b AO3 2b	Do not allow unreacted reagents Allow give the sample time to dry in air
09.4	$\begin{aligned} & M_{\mathrm{r}} \text { product }=135.0 \\ & \text { Expected mass }=5.05 \times \frac{135.0}{93.0}=7.33 \mathrm{~g} \\ & \text { Percentage yield }=\frac{4.82}{7.33} \times 100=65.75=65.8(\%) \end{aligned}$	1 1 1	AO2h AO2h A01b	Answer must be given to this precision

09.5	OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCOCH}_{3}+\mathrm{NO}_{2}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NHCOCH}_{3}\right) \mathrm{NO}_{2}+\mathrm{H}^{+}$	1	AO2c	
09.6	Electrophilic substitution	1	AO1a	
09.7	Hydrolysis	1	AO3 1a	
09.8	$\mathrm{Sn} / \mathrm{HCl}$	1	A01b	Ignore acid concentration; allow $\mathrm{Fe} / \mathrm{HCl}$

Question	Marking guidance	Mark	AO	Comments
10	IR M1 Absorption at $3360 \mathrm{~cm}^{-1}$ shows OH alcohol present NMR	1	AO3 1a	Extended response Deduction of correct structure without explanation scores maximum of 4 marks as this does not show a clear, coherent line of reasoning.
	M2 There are 4 peaks which indicates 4 different environments of hydrogen	1	AO3 1a	Maximum of 6 marks if no structure given OR if coherent logic not displayed in the explanations of
	M3 The integration ratio $=1.6: 0.4: 1.2: 2.4$ The simplest whole number ratio is $4: 1: 3: 6$	1	AO3 1a	how two of $\mathrm{OH}, \mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{CH}_{3}$ are identified.
	M4 The singlet (integ 1) must be caused by H in OH alcohol	1	AO3 1a	
	M5 The singlet (integ 3) must be due to a CH_{3} group with no adjacent H	1	AO3 1b	
	M6 Quartet + triplet suggest $\mathrm{CH}_{2} \mathrm{CH}_{3}$ group	1	AO3 1b	
	M7 Integration 4 and integration 6 indicates two equivalent $\mathrm{CH}_{2} \mathrm{CH}_{3}$ groups	1	AO3 1b	
	M8	1	AO3 1b	

Question	Marking guidance		Mark	AO	Comments
11.1	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}+2[\mathrm{H}] \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$		1	A01b	
11.2	This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.		6	$\begin{gathered} 1 \\ \text { AO1a } \\ \\ 5 \\ \text { AO2a } \end{gathered}$	Indicative Chemistry content Stage 1: Formation of product - Nucleophilic attack - Planar carbonyl group - H^{-}attacks from either side (stated or drawn) Stage 2: Nature of product - Product of step 1 shown - This exists in two chiral forms (stated or drawn) - Equal amounts of each enantiomer/racemic mixture formed Stage 3: Optical activity - Optical isomers/enantiomers rotate the plane of polarised light equally in opposite directions - With a racemic/equal mixture the effects cancel
	Level 3 5-6 marks	All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 then stage 3 .			
	Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 3.			
	Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order or show confused reasoning.			
	Level 0 0 marks	Insufficient correct chemistry to gain a mark.			

Question	Marking guidance	Mark	AO	Comments
12.1	$\mathrm{HBr} \mathrm{OR} \mathrm{HCl} \mathrm{OR} \mathrm{H}_{2} \mathrm{SO}_{4}$	1	AO1b	Allow HI or HY
12.2	Electrophilic addition	1 4	A01a AO2a	Allow consequential marking on acid in 12.1 and allow use of HY
12.3	The major product exists as a pair of enantiomers The third isomer is 1-bromobutane (minor product) Because it is obtained via primary carbocation	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	AO2a AO2a AO2a	

