AQA

A-level
CHEMISTRY
(7405/1)
Paper 1: Inorganic and Physical Chemistry
Mark scheme
Specimen paper

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Question		Marking guidance	Mark	AO	Comments
01.1	This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.		6	$\begin{aligned} & 2 \mathrm{AO} 1 \mathrm{a} \\ & 2 \mathrm{AO} 2 \mathrm{a} \\ & 2 \mathrm{AO} 2 \mathrm{~b} \end{aligned}$	Indicative chemistry content Stage 1: Electrons round P - $\quad P$ has 5 electrons in the outside shell - With 3 electrons from 3 fluorine, there are a total of 8 electrons in outside shell - so 3 bond pairs, 1 non-bond pair Stage 2: Electron pair repulsion theory - Electron pairs repel as far as possible - Lone pair repels more than bonding pairs Stage 3: Conclusions - Therefore, tetrahedral / trigonal pyramidal shape - With angle of $109(.5)^{\circ}$ decreased to 107°
	Level 3 5-6 marks	All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 then stage 3 .			
	Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 3.			
	Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order or show confused reasoning.			
	Level 0 0 marks	Insufficient correct chemistry to gain a mark.			

01.2	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7}$	1	AO1a	Allow correct numbers that are not superscripted
01.3	Too many electrons in d sub-shell / orbitals	1	AO3 1b	
01.4	Tetrahedral (shape)	1	AO2a	
	109.5°	1	AO2a	Allow 109 ${ }^{\circ}$

Question	Marking guidance	Mark	AO	Comments
02.1	The number of protons increases (across the period) / nuclear charge increases Therefore, the attraction between the nucleus and electrons increases	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	A01a AO1a	Can only score M2 if M1 is correct
02.2	S_{8} molecules are bigger than P_{4} molecules Therefore, van der Waals / dispersion / London forces between molecules are stronger in sulfur	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	A01a A01a	Allow sulfur molecules have bigger surface area and sulfur molecules have bigger M_{r}
02.3	Sodium oxide contains O^{2-} ions These O^{2-} ions react with water forming OH^{-}ions	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \mathrm{c} \\ & \mathrm{AO} 2 \mathrm{C} \end{aligned}$	$\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{OH}^{-}$scores M1 and M2
02.4	$\mathrm{P}_{4} \mathrm{O}_{10}+12 \mathrm{OH}^{-} \longrightarrow 4 \mathrm{PO}_{4}{ }^{3-}+6 \mathrm{H}_{2} \mathrm{O}$	1	AO2d	

Question	Marking Guidance	Mark	AO	Comments
03.1	The ions in the ionic substance in the salt bridge move through the salt bridge To maintain charge balance / complete the circuit	1 1	A01b AO1b	
03.2	F^{-}	1	AO3 1a	
03.3	$E^{\ominus} \mathrm{SO}_{4}{ }^{2-} / \mathrm{SO}_{2}<E^{\ominus} \mathrm{Br}_{2} / \mathrm{Br}^{-}$	1	AO3 1a	Allow correct answer expressed in words, eg electrode potential for sulfate ions / sulfur dioxide is less than that for bromine / bromide
03.4	1.23 (V)	1	AO2d	
03.5	A fuel cell converts more of the available energy from combustion of hydrogen into kinetic energy of the car / an internal combustion engine wastes more (heat) energy	1	AO3 1b	

Question	Marking guidance	Mark	AO	Comments
04.1	$\begin{aligned} & \text { Bonds broken }=2(\mathrm{C}=\mathrm{O})+3(\mathrm{H}-\mathrm{H})=2 \times 743+3 \times \mathrm{H}-\mathrm{H} \\ & \text { Bonds formed }=3(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+3(\mathrm{O}-\mathrm{H})=3 \times 412+360+3 \times 463 \\ & -49=[2 \times 743+3 \times(\mathrm{H}-\mathrm{H})]-[3 \times 412+360+3 \times 463] \\ & 3(\mathrm{H}-\mathrm{H})=-49-2 \times 743+[3 \times 412+360+3 \times 463]=1450 \\ & \mathrm{H}-\mathrm{H}=483\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	1 1 1	AO1b AO1b AO1b	Both required Both required Allow 483.3(3)
04.2	Mean bond enthalpies are not the same as the actual bond enthalpies in CO_{2} (and/or methanol and/or water)	1	AO1b	
04.3	The carbon dioxide (produced on burning methanol) is used up in this reaction	1	AO3 1b	
04.4	4 mol of gas form 2 mol At high pressure the position of equilibrium moves to the right to lower the pressure / oppose the high pressure This increases the yield of methanol	1 1 1	$\begin{gathered} \text { AO2f } \\ \text { AO3 1b } \\ \text { AO3 1b } \end{gathered}$	
04.5	Impurities (or sulfur compounds) block the active sites	1	AO1b	Allow catalyst poisoned

04.6	Stage 1: moles of components in the equilibrium mixture	1	AO2f	Extended response question
	$\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$			
	Initial moles 1.0 3.0 0 0			
	Eqm $(1-0.86)$ $(3-3 \times 0.86)$ 0.86 0.86 moles $=0.14$ $=0.42$			
	Stage 2: Partial pressure calculations			
	Total moles of gas $=2.28$	1	AO2f	
	Partial pressures $=$ mol fraction $\times \mathrm{p}_{\text {total }}$			
	$\begin{aligned} & \mathrm{p}_{\mathrm{co2}}=\mathrm{mol} \text { fraction } \times \mathrm{p}_{\text {total }}=0.14 \times 500 / 2.28=30.7 \mathrm{kPa} \\ & \mathrm{p}_{\mathrm{H} 2}=\text { mol fraction } \times \mathrm{p}_{\text {total }}=0.42 \times 500 / 2.28=92.1 \mathrm{kPa} \end{aligned}$	1	AO2f	M3 is for partial pressures of both reactants
				Alternative M3 = $\begin{aligned} & \mathrm{pp}_{\mathrm{co2}}=0.0614 \times 500 \\ & \mathrm{pp}_{\mathrm{H} 2}=0.1842 \times 500 \end{aligned}$
	$\begin{aligned} & \mathrm{p}_{\mathrm{CH} 3 \mathrm{OH}}=\text { mol fraction } \times \mathrm{p}_{\text {total }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa} \\ & \mathrm{p}_{\mathrm{H} 2 \mathrm{O}}=\text { mol fraction } \times \mathrm{p}_{\text {total }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa} \end{aligned}$	1	AO2f	M4 is for partial pressures of both products Alternative M4 =
	Stage 3: Equilibrium constant calculation			$\begin{aligned} & \mathrm{pp}_{\text {СН } 3 \mathrm{OH}}=0.3772 \times 500 \\ & \mathrm{pp}_{\mathrm{H} 2 \mathrm{O}}=0.3772 \times 500 \end{aligned}$
	$K_{\mathrm{p}}=p_{\mathrm{CH} 3 \mathrm{OH}} \times \mathrm{p}_{\mathrm{H} 2 \mathrm{O}} / \mathrm{p}_{\mathrm{CO} 2} \times\left(\mathrm{p}_{\mathrm{H} 2}\right)^{3}$	1	AO2f	
	Hence $K_{p}=188.6 \times 188.6 / 30.7 \times(92.1)^{3}=1.483 \times 10^{-3}=1.5 \times 10^{-3}$	1	AO1b	Answer must be to 2 significant figures
	Units $=\underline{\mathrm{kPa}} \underline{\underline{-2}}$	1	AO2f	

Question	Marking guidance	Mark	AO	Comments
05.1	$\Delta S=238+189-214-3 \times 131=-180 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	1	AO1b	
	$\Delta G=\Delta H-T \Delta S$	1	AO1a	
	$=-49-\frac{523 \times(-180)}{1000}$	1	AO1b	
	$=+45.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$	1	AO1b	Units essential
05.2	When $\Delta G=0, \Delta H=T \Delta S$ therefore $T=\Delta H / \Delta S$	1	AO1b	
	$=-49 \times 1000 /-180=272(\mathrm{~K})$	1	AO1b	Mark consequentially to ΔS in 5.1

05.3	Diagram marks Diagram of a molecule showing $\mathrm{O}-\mathrm{H}$ bond and two lone pairs on each oxygen Labels on diagram showing $\delta+$ and δ - charges Diagram showing $\delta+$ hydrogen on one molecule attracted to lone pair on a second molecule Explanation mark Hydrogen bonding (the name mentioned) is a strong enough force (to hold methanol molecules together in a liquid)	1 1 1 1	AO2a AO2a AO2a AO2a	Allow explanation of position of $\delta+$ and δ - charges on H and O

Question	Marking guidance	Mark	AO	Comments
06.1	Burette Because it can deliver variable volumes	1	AO3 1b AO2g	
06.2	The change in pH is gradual / not rapid at the end point An indicator would change colour over a range of volumes of sodium hydroxide	1	AO3 1a AO3 1a	Allow indicator would not change colour rapidly / with a few drops of NaOH
06.3	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=1.58 \times 10^{-12}} \\ & K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \text {therefore }\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}^{+}\right] \\ & \text {Therefore, }\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} / 1.58 \times 10^{-12}=6.33 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	AO2h AO2h AO2h	Allow 6.31-6.33 $\times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
06.4	$\left.\begin{array}{l} \text { At this point, }\left[\mathrm{NH}_{3}\right]=\left[\mathrm{H}^{+}\right] \\ \text {Therefore } \left.\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2}\right]^{+} \\ {\left[\mathrm{NH}_{4}^{+}\right]} \end{array}\right] \begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-4.6}=2.51 \times 10^{-5}} \\ & K_{\mathrm{a}}=\left(2.51 \times 10^{-5}\right)^{2} / 2=3.15 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	1 1 1	AO2f AO2f AO2f	Allow 3.15-3.16 $\times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
06.5	When $\left[\mathrm{NH}_{3}\right]=\left[\mathrm{NH}_{4}^{+}\right], \quad K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]$therefore $-\log K_{\mathrm{a}}=-\log \left[\mathrm{H}^{+}\right]$ Therefore $\mathrm{pH}=-\log _{10}\left(3.15 \times 10^{-10}\right)=9.50$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO2h AO2h	Answer using alternative value $\mathrm{M} 2 \mathrm{pH}=-\log _{10}\left(4.75 \times 10^{-9}\right)=8.32$ Allow consequential marking based on answer from 6.4

Question	Marking guidance	Mark	AO	Comments
07.1	\mathbf{Y}	1	AO3 1a	
07.2	\mathbf{X}	1	AO3 1a	
07.3	Jump in trend of ionisation energies after removal of fifth electron Fits with an element with 5 outer electrons $\left(4 s^{2} 3 d^{3}\right)$ like V	1	AO2b	
07.4	Explanation: Two different colours of solution are observed			
	Because each colour is due to vanadium in a different oxidation state	1	AO2g	

Stage 1: mole calculations in either order
Moles of vanadium $=50.0 \times 0.800 / 1000=4.00 \times 10^{-2}$
Moles of $\mathrm{SO}_{2}=\mathrm{pV} / \mathrm{RT}=\left(98000 \times 506 \times 10^{-6}\right) /(8.31 \times 293)$
$=2.04 \times 10^{-2}$

Stage 2: moles of electrons added to $\mathrm{NH}_{4} \mathrm{VO}_{3}$
When SO_{2} (sulfur(IV) oxide) acts as a reducing agent, it is oxidised to sulfate (VI) ions so this is a two electron change

Moles of electrons released when SO_{2} is oxidised $=2.04 \times 10^{-2} \times 2$ $=4.08 \times 10^{-2}$

Stage 3 : conclusion
But in $\mathrm{NH}_{4} \mathrm{VO}_{3}$ vanadium is in oxidation state 5
$4.00 \times 10^{-2} \mathrm{~mol}$ vanadium has gained $4.08 \times 10^{-2} \mathrm{~mol}$ of electrons therefore 1 mol vanadium has gained $4.08 \times 10^{-2} / 4.00 \times 10-2=1 \mathrm{~mol}$ of electrons to the nearest integer, so new oxidation state is $5-1=4$.

Question	Marking guidance	Mark	AO	Comments
08.1	An electron pair on the ligand Is donated from the ligand to the central metal ion	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	A01a A01a	
08.2	Blue precipitate Dissolves to give a dark blue solution $\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}} \\ & \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO1b A01b AO2d AO2d	
08.3	$\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \longrightarrow} \\ & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{NH}_{3}} \end{aligned}$	1	AO2b	
08.4	$\mathrm{Cu}-\mathrm{N}$ bonds formed have similar enthalpy / energy to $\mathrm{Cu}-\mathrm{N}$ bonds broken And the same number of bonds broken and made	1 1	AO3 1b AO3 1b	
08.5	3 particles form 5 particles / disorder increases because more particles are formed / entropy change is positive Therefore, the free-energy change is negative	1 1	$\begin{aligned} & \mathrm{AO} 2 \mathrm{e} \\ & \mathrm{AO} 2 \mathrm{e} \end{aligned}$	M2 can only be awarded if M1 is correct

Question	Marking guidance	Mark	AO	Comments
09.1	Start a clock when KCl is added to water Record the temperature every subsequent minute for about 5 minutes Plot a graph of temperature vs time Extrapolate back to time of mixing $=0$ and determine the temperature	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO3 2b AO3 2b AO3 2a AO3 2a	Allow record the temperature at regular time intervals until some time after all the solid has dissolved for M2
09.2	Heat taken in $=m \times c \times \Delta T=50 \times 4.18 \times 5.4=1128.6 \mathrm{~J}$ Moles of $\mathrm{KCl}=5.00 / 74.6=0.0670$ Enthalpy change per mole $=+1128.6 / 0.0670=16839 \mathrm{~J} \mathrm{~mol}^{-1}$ $=+16.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO2h AO2h AO2h A01b	Max 2 if $14.6^{\circ} \mathrm{C}$ used as ΔT Answer must be given to this precision
09.3	$\Delta H_{\text {solution }}=\Delta H_{\text {lattice }}+\Delta \mathrm{H}($ hydration of calcium ions $)+2 \times \Delta \mathrm{H}($ hydration of chloride ions) $\Delta H_{\text {lattice }}=\Delta H_{\text {solution }}-\Delta \mathrm{H}$ (hydration of calcium ions) $-2 \times \Delta \mathrm{H}$ (hydration of chloride ions) $\Delta H_{\text {lattice }}=-82.9-(-1650+2 \times-364)=+2295\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \mathrm{f} \\ & \mathrm{AO} 2 \mathrm{f} \end{aligned}$	
09.4	Magnesium ion is smaller than the calcium ion Therefore, it attracts the chloride ion more strongly / stronger ionic bonding	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \mathrm{a} \\ & \mathrm{AO} 2 \mathrm{a} \end{aligned}$	

Question	Marking guidance	Mark	AO	Comments
10.1	Q is calcium or magnesium bromide \mathbf{R} is aluminium chloride \mathbf{S} is iron(III) sulfate	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO3 1b AO3 1b	Mark this question independently
10.2	$\begin{aligned} & \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \longrightarrow \mathrm{BaSO}_{4} \\ & {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}} \\ & 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}^{2-} \longrightarrow \\ & \\ & {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+4 \mathrm{Cl}^{-} \longrightarrow} \end{aligned}{\mathrm{Pe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}}^{\left[\mathrm{FeCl}_{4}\right]^{-}+6 \mathrm{H}_{2} \mathrm{O}} 4$	1 1 1 1	AO1a AO1a AO1a AO1a	

