AQA

AS
CHEMISTRY
(7404/2)
Paper 2: Organic and Physical Chemistry
Mark scheme
Specimen paper

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Question	Marking guidance	Mark	AO	Comments
01.1		1	A01a	
01.2		1	AO2c	

01.4 Moles of maleic acid $=10.0 / 116.0=8.62 \times 10^{-2}$

AND mass of organic product expected $=\left(8.62 \times 10^{-2}\right) \times 98.0$ $=8.45 \mathrm{~g}$
Or moles of organic product formed $=6.53 / 98.0=6.66 \times 10^{-2}$
1 AO3 1a
$\%$ yield $=100 \times 6.53 / 8.45$
$\mathrm{OR}=100 \times\left(6.66 \times 10^{-2}\right) /\left(8.62 \times 10^{-2}\right)$
$=77.294=77.3 \%$
AND statement that the student was NOT correct
AO3 1a

Question	Marking guidance	Mark	AO	Comments
02.1	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}+8 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1	AO2a	
02.2	```Temperature rise \(=20.1\) \(q=50.0 \times 4.18 \times 20.1=4201(\mathrm{~J})\) Mass of alcohol burned \(=0.54 \mathrm{~g}\) and \(M_{\mathrm{r}}\) alcohol \(=100.0\) \(\therefore\) mol of alcohol \(=n=0.54 / 100=0.0054\) Heat change per mole \(=q / 1000 \mathrm{n}\) OR \(q / n\) \(=778 \mathrm{~kJ} \mathrm{~mol}^{-1}\) OR \(778000 \mathrm{~J} \mathrm{~mol}^{-1}\) \(\Delta H=-778 \mathrm{~kJ} \mathrm{~mol}^{-1}\) OR \(-778000 \mathrm{~J} \mathrm{~mol}^{-1}\)```	1 1 1 1	$\begin{aligned} & \text { AO2h } \\ & \text { AO2h } \\ & \text { AO2h } \\ & \text { AO1a } \end{aligned}$	M4 is for answer with negative sign for exothermic reaction Units are tied to the final answer and must match
02.3	Less negative than the reference Heat loss OR incomplete combustion OR evaporation of alcohol OR heat transferred to beaker not taken into account	1	$\begin{aligned} & \text { AO3 1b } \\ & \text { AO3 1b } \end{aligned}$	
02.4	Water has a known density (of $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$) Therefore, a volume of $50.0 \mathrm{~cm}^{3}$ could be measured out	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO3 2a AO3 2a	

Question	Marking guidance	Mark	AO	Comments
03.1	(Compounds with the) same molecular formula but different structural / displayed / skeletal formula	1	A01a	
03.2	(basic) elimination Mechanism points: Correct arrow from lone pair on : OH^{-}to H on C adjacent to $\mathrm{C}-\mathrm{Br}$ Correct arrow from $\mathrm{C}-\mathrm{H}$ bond to $\mathrm{C}-\mathrm{C}$ Correct arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br Structure of chosen product OR	1 1 1 1 1	AO1a AO2a AO2a AO2a AO2a	

04.3	Advantage - ethanol is produced at a faster rate Disadvantage - more energy is used / required in the reaction	1 1	AO2e AO2e	
04.4	Air gets in / oxidation occurs	AO1a		
04.5	Alcohol OH absorption in different place $\left(3230-3550 \mathrm{~cm}^{-1}\right)$ from acid OH absorption $\left(2500-3000 \mathrm{~cm}^{-1}\right)$ The C=O in acids has an absorption at $1680-1750 \mathrm{~cm}^{-1}$	1	AO2e	

Question	Marking guidance	Mark	AO	Comments
05.1	UV light $\mathrm{CCl}_{4} \longrightarrow \mathrm{CCl}_{3} \bullet+\bullet \mathrm{Cl}$	1 1	A01a AO2a	
05.2	$\begin{aligned} & \mathrm{Cl} \bullet+\mathrm{O}_{3} \longrightarrow \mathrm{ClO} \bullet+\mathrm{O}_{2} \\ & \mathrm{ClO} \bullet+\mathrm{O}_{3} \longrightarrow \mathrm{Cl} \bullet+2 \mathrm{O}_{2} \end{aligned}$	1 1	A01a A01a	
05.3	$\begin{aligned} & M_{\mathrm{r}} \text { of } \mathrm{CF}_{3} \mathrm{Cl}=104.5 \\ & \text { Moles freon }=1.78 \times 10^{-4} \times 10^{3} / 104.5=1.70 \times 10^{-3} \\ & \text { Number of molecules }=1.70 \times 10^{-3} \times 6.02 \times 10^{23}=1.02 \times 10^{21} \\ & \text { Molecules in } 500 \mathrm{~cm}^{3}=\left(1.02 \times 10^{21} \times 500 \times 10^{-6}\right) / 100 \\ & =5.10 \times 10^{15} \end{aligned}$	1 1	AO1b AO1b A01b	Allow answer in the range $5.10-5.13 \times 10^{15}$ Answer must be given to this precision

Question	Marking guidance	Mark	AO	Comments
06.1	Alkenes	1	A01a AO2a	Correctly drawn molecule of cyclobutane or methyl cyclopropane, need not be displayed formula
06.2	$\mathrm{C}_{6} \mathrm{H}_{14}$ (or correct alkane structure with 6 carbons)	1	AO2a	Allow hexane or any other correctly named alkane with 6 carbons
06.3	Poly(but-2-ene)	1	AO1a	
06.4	High pressure	1	AO1b	Allow pressure $\geq 1 \mathrm{MPa}$ Mention of catalyst loses the mark

06.5	This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.	
	Level 3 5-6 marks	All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer communicates the whole process coherently and shows a logical progression from stage 1 and stage 2 (in either order) to stage 3.
	Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression. Some steps in each stage may be out of order and incomplete.
	Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order or show confused reasoning.
	Level 0 0 marks	Insufficient correct chemistry to gain a mark.

Question	Marking guidance	Mark	AO	Comments
07.1	Measured volume would be greater Level in burette falls as tap is filled before any liquid is delivered	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO3 1b AO3 1b	
07.2	Drop sizes vary	1	AO3 1b	Allow percentage error for amount of oil will be large as the amount used is so small
07.3	Use a larger single volume of oil Dissolve this oil in the organic solvent Transfer to a conical flask and make up to $250 \mathrm{~cm}^{3}$ with more solvent Titrate ($25 \mathrm{~cm}^{3}$) samples from the flask	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO3 2b AO3 2b AO3 2b AO3 2b	

07.4	Stage 1			Extended response calculation
	Mass of oil $=0.92 \times\left(5.0 \times 10^{-2} \times 5\right)=0.23(\mathrm{~g})$	1	AO2h	To gain 4 or 5 marks, students must show a logical
	Mol of oil $=0.23 / 885=2.6 \times 10^{-4}$	1	AO2h	progression from stage 1 and stage 2 (in either order) to stage 3
	Stage 2			
	Mol bromine $=2.0 \times 10^{-2} \times 39.4 / 1000=7.9 \times 10^{-4}$	1	AO2h	
	Stage 3			
	Ratio oil $:$ bromine 2.6×10^{-4} $: 7.9 \times 10^{-4}$			
	Simplest ratio $=2.6 \times 10^{-4} / 2.6 \times 10^{-4}: 7.9 \times 10^{-4} / 2.6 \times 10^{-4}$			
	$=1: 3$	1	AO2h	
	Hence, $3 \mathrm{C}=\mathrm{C}$ bonds	1	AO3 1a	M5 cannot be awarded unless working for M4 is shown

Section B

In this section, each correct answer is awarded 1 mark.

Question	Key	AO
8	B	AO2b
9	C	AO1a
10	D	AO2d
11	C	AO2a
12	D	AO1b
13	B	AO1a
14	C	AO1b
15	A	AO1b
16	D	AO1a
17	AO1a	
18	C	AO1a
19	A	AO1a
20	C	AO3 2b
21		
22		

