

GCE AS and A Level

Chemistry

AS exams 2009 onwards A2 exams 2010 onwards

Unit 6T: ISA Specimen mark scheme

Version 1.3

General Certificate of Education

Chemistry

CHM6T Investigative Skills Assessment

(ISA) Centre Assessed Unit

Marking Guidelines

Specimen Paper

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. The specimen assessment materials are provided to give centres a reasonable idea of the general shape and character of the planned question papers and mark schemes in advance of the first operational exams.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

ASSESSMENT OF IMPLEMENTAION

The following skills are assessed from the **Candidate Results Sheet:** Recording and accuracy

(a) the **recording** of results

constructs sensible table; results recorded clearly in the table;

(b) the **accuracy** of the observations (mark to the grid on page 4)

12 scoring points11-12points scores6 marks9 -10points scores5 marks7 - 8points scores4 marks5 - 6points scores3 marks3 - 4points scores2 marks1 - 2points scores1 marks

6 max

1

1

Total 8

Expected Observations	ted Observations glucose etha		ethanoic acid methanoic acid		methanoic acid	
Test	Observation with Compound A	Observation with Compound B	Observation with Compound C			
Test 1 Fehling's solution	red/orange precipitate	no visible change	no visible change			
Test 2 acidified potassium manganate(VII) solution	brown precipitate or colourless solution	no visible change	colourless solution			
Test 3 sodium hydrogen- carbonate	no visible change	no visible change effervescence efferves	effervescence			
Test 4 methyl orange	no visible change	red solution	red solution			

SECTION A

ANALYSING

Question 1

A red/orange precipitate with Fehling's solution	1 1
Question 2	
B and C effervescence with sodium hydrogencarbonate/ indicator changes colour	1 1
Question 3	
C decolourises KMnO ₄	1 1
Question 4	
(NaOH and heat) test gas with indicator/conc HCI colour change for an alkali/white fumes	1 1
	Total 8

SECTION B

ANALYSING

Question 5

K _c =	<u>[CH₃COOCH₂CH₃][H₂O]</u> [CH ₃ COOH][CH ₃ CH ₂ OH]	1

Question 6

moles = 0.42/60 = 0.007	1	

Question 7

moles = $MV/1000 = 0.5 \times 3/1000 = 1.5 \times 10^{-3}$	1
moles acid = 1.5×10^{-3}	1

Question 8

moles acid used = $7 \times 10^{-3} - 1.5 \times 10^{-3} = 5.5 \times 10^{-3}$	1
equil moles ester = water = 5.5×10^{-3}	1

Question 9

equil. moles	alcohol =	0.01 - 5.5 x 10 ⁻³ = 4.5 x 10 ⁻³	1
--------------	-----------	--	---

$$K_{\rm c} = \frac{(5.5 \times 10^{-3})^2}{(1.5 \times 10^{-3})(4.5 \times 10^{-3})} = 4.48$$

 $K_{\rm c}$ to 3 sig figs

Question 10

total error 5.2%	$(0.2\% + 5.0\%, \text{ based on } 0.42 \text{ g and } 3.0 \text{ cm}^3)$	
------------------	---	--

Question 11

not reversible/ better yield /room temperature/ reaction faster	1
ethanoyl chloride very corrosive / reaction violent / HCl fumes	1

Total 12

1

EVALUATION

Question 12	
difference of 0.56 against 3.92 is a 14.3% error	1
Question 13	
discrepancy > apparatus error so some procedure error/ operator error	1
Question 14	
(titre of 15 - 30 cm ³ requires) 0.1 M to 0.05 M reduces burette error/ more accurate endpoint	1 1
Question 15	
<i>K</i> _c temperature dependant	1
Question 16	
percentage yield is 87.0	1
Question 17	
adding reagent drives reaction forward greater percentage of ester in product	1 1
Question 18	
conduct reaction at 40-60 °C volatile ester distils out of mixture	1 1
	Total 10