Surname			Other	Names			
Centre Number				Candida	ate Number		
Candidate Signatur	е						

General Certificate of Education June 2008 Advanced Level Examination

CHEMISTRY Unit 6a Synoptic Assessment

CHM6/W

Thursday 19 June 2008 9.00 am to 10.00 am

For this paper you must have:

- · an objective test answer sheet,
- · a calculator.

Time allowed: 1 hour

Instructions

- Use a black ball-point pen. Do **not** use pencil.
- Fill in the boxes at the top of this page.
- Answer all 40 questions.
- For each item there are four responses. When you have selected the response which you think is the best answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book, **not** on your answer sheet.
- Make sure that you hand in **both** your answer sheet **and** this answer book at the end of this examination.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- Each correct answer will score one mark. No deductions will be made for wrong answers.
- This paper carries 10 per cent of the total marks for Advanced Level.

Advice

• Do not spend too long on any question. If you have time at the end, go back and answer any question you missed out.

Multiple choice questions

Each of Questions 1 to 20 consists of a question or an incomplete statement followed by four suggested answers or completions. You are asked to select the most appropriate answer in each case.

1 Which one of the following solids contains covalent bonds but not ionic bonds?

	A	C ₆ H ₅ COOH
	В	CuSO ₄
	C	NH ₄ Br
	D	CH ₃ NH ₃ Cl
2	Whi	ch one of the following has the same electronic arrangement as Li ⁺ ?
	A	Na ⁺
	В	Be^{2+}
	C	F^-
	D	Ne
3	Wha	It is the final pH of the solution obtained when 0.200mol of sodium propanoate is added to $ \text{dm}^3$ of a $0.100 \text{mol} \text{dm}^{-3}$ solution of propanoic acid ($K_a = 1.30 \times 10^{-5} \text{mol} \text{dm}^{-3}$)?
	A	6.59
	В	5.19
	C	4.59
	D	2.84

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

	F												
0	4.0 He Helium 2	20.2 Ne	Neor 10	39.9 Ar	Argo 18	83.8 7	Krypton 36	131.3 Xe	Xeno 54	222.0 Rn	Rado 86		
=		19.0 T	Fluorine 9	32.5 C	Chlorine 17	79.9 Br	Bromine 35	126.9 –	lodine 53	210.0 At	Astatine 85		
5		္ဝ	Oxygen	_်လ	Sulphur	Se Se	elenium t	.7.6 Te	ellurium	210.0 Po	Polonium 84		
>		0. Z	Nitrogen	٠. ت	nosphoru 5	4.9 As	Arsenic 3	21.8 S	Antimony 1	209.0 Bi	Bismuth 83		
≥		10.8 12.0 1.	Carbon 6	28.1 Si	Silicon 14	72.6 Ge	Germanium 32	118.7 Sn	Tin 50	207.2 Pb	Lead 82		
≡		10.8 B	Boron 5	27.0 AI	Aluminium 13	69.7 Ga	Gallium 31	114.8 In	Indium 49	204.4 TI	Thallium 81		
						65.4 Zn	Zinc 30	112.4 Cd	Cadmium 48	200.6 Hg			
								107.9 Ag		197.0 Au	Gold 79		
						5 8.7	Nickel 28	106.4 Pd	Palladium 46	195.1 P	Platinum 78		
						58.9 Co	Cobalt 27	102.9 Rh	Rhodium 45	192.2 Ir	Iridium 77		
						55.8 Fe	Iron 26	101.1 Ru	Ruthenium 44	190.2 Os	Osmium 76		
		6.9 Li	Lithium 3			54.9 Mn	m Manganese Iron Cobalt 25 26 27	98.9 Tc	Technetium 43	186.2 Re	Rhenium 75		
		188 ——				52.0 Cr	Chromiur 24	95.9 Mo	Molybdenum 42	183.9 W	Tungsten 74		
		relative atomic mass	umber —			50.9 V	_	92.9 Nb	Niobium 41	180.9 Ta	Tantalum 73		
	Key	relative a	atomic number			47.9 Ti	Titanium 22	91.2 Zr	_	178.5 H	Hafnium 72		
						45.0 Sc	Scandium 21	8 8.9	Yttrium 39	138.9 La	Lanthanum 57 * 7	227 Ac	Actinium 89 †
=		9.0 Be	Beryllium 4	24.3 Mg	Magnesium 12		Calcium 20	87.6 Sr	Strontium 38	137.3 Ba	_	226.0 Ra	Radium 88
-	1.0 エ Hydrogen	6.9 Li	Lithium 3	23.0 Na	Sodium 11	39.1 K	_	85.5 Rb		132.9 Cs	_	223.0 Fr	Francium 87

	140.1	40.1 140.9 144.2 144	144.2	റു	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
* 50 71 - 021	ီ	Ţ	D Z	Ξ	SB	3	ნ	<u>q</u>	Ś	운	Ī	Ξ	ΔY	3
30 - / L Lannandes	Cerinm	Praseodymium Neodymium Promethium	Neodymium	Promethium	Samarium	Europium	Sadolinium	Terbium	Dysprosium	Holmium	Erbiu	Thulium	Ytterbium	Lutetium
	28	29	00	61	92	<u> </u>	34	65	99	67	89	69	70	71
	232.0 Th	232.0 231.0 238.0 237.0 Th Pa II ND	238.0	237.0 Nn	239.1 DI	243.1	247.1 Cm	247.1 Rk	252.1 Cf	(252) Fe	(257) Fm	(258) M d	(259) No	(258) (259) (260) Md No Ir
† 90 – 103 Actinides	Thorium 90	Thorium Protactinium Uranium Neptr	Uranium 92	Neptunium 93	Plutonium Americium 94 95	Americium 95	Curium 96	Berkelium (97	Californium 98	Californium Einsteinium 99	Fermiu 100	Mendelevium 101	Nobelium 102	Lawrencium 103

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500-3000

Questions 4 to 6

The diagrams represent some dilute aqueous solutions.

In all cases, only a few of the large numbers of water molecules are shown.

Which one of the diagrams represents

- 4 a solution of a strong acid?
- 5 a solution of a salt formed by neutralising a strong acid with sodium hydroxide?
- 6 a solution of a weak acid partially neutralised by sodium hydroxide?

- 7 The largest mass of silver chloride is precipitated when an excess of silver nitrate solution is added to
 - **A** 25.0 cm³ of a 0.800 mol dm⁻³ solution of hydrochloric acid.
 - **B** 50.0 cm³ of a 0.500 mol dm⁻³ solution of sodium chloride.
 - C 50.0 cm³ of a 0.200 mol dm⁻³ solution of magnesium chloride.
 - **D** 30.0 cm³ of a 0.300 mol dm⁻³ solution of iron(III) chloride.
- 8 Titanium ore is processed to give a concentrate containing 95%, by mass, of titanium(IV) oxide. The percentage by mass of titanium in this concentrate is
 - A 25
 - **B** 39
 - **C** 57
 - **D** 76
- 9 Four possible thermal decomposition reactions of $N_2O_5(s)$ are shown below. Which one of the following reactions has the largest mole fraction of oxygen gas in its product mixture?
 - $\mathbf{A} \quad N_2O_5(s) \rightarrow N_2O_3(g) + O_2(g)$
 - **B** $N_2O_5(s) \rightarrow N_2O_4(g) + \frac{1}{2}O_2(g)$
 - $\mathbf{C} \quad \mathbf{N}_2\mathbf{O}_5(\mathbf{s}) \, \longrightarrow \, 2\mathbf{N}\mathbf{O}_2(\mathbf{g}) \, + \, \frac{1}{2}\mathbf{O}_2(\mathbf{g})$
 - $\textbf{D} \quad \text{N}_2\text{O}_5(s) \, \longrightarrow \, \text{NO}_2(g) \, + \, \text{NO}(g) \, + \, \text{O}_2(g)$
- 10 Which one of the statements about the following ester is correct?

- A It is a chain isomer of pentanoic acid.
- **B** It is a functional group isomer of ethyl propanoate.
- C It can be hydrolysed to produce an alcohol that can also be formed by the acid-catalysed hydration of propene.
- **D** It can be hydrolysed to produce an alcohol that is resistant to oxidation by acidified potassium dichromate(VI).

- Which one of the following reactions produces a compound that could be used as a monomer in the formation of an addition polymer that contains chlorine atoms?
 - **A** The addition of one molecule of HCl to 1,2-dichloroethene.
 - **B** The addition of one molecule of HCl to propene.
 - C The elimination of one molecule of HCl from 2-chloropropane.
 - **D** The elimination of one molecule of HCl from 1,2-dichloroethane.
- 12 Which one of the following reacts with butanedioic acid to form a condensation polymer?
 - **A** The product from the reaction of epoxyethane with water.
 - **B** The product from the reaction of ethanoic anhydride with water.
 - C The product from the reaction of ethanal with HCN
 - **D** The product from the reaction of ethene with bromine.
- Which one of the following is formed when an excess of bromomethane reacts with diethylamine?

$$\begin{array}{c|c} C & \begin{array}{c} CH_3 \\ \\ CH_3CH_2 - N - CH_3 \\ \\ CH_3 \end{array} \end{array} \right]^+ Br^-$$

$$\begin{array}{c|c} \mathbf{D} & \begin{bmatrix} CH_3 \\ -N - CH_2CH_3 \end{bmatrix}^+ Br^- \\ CH_3 & \end{bmatrix}$$

14 A sequence of reactions is shown below.

A correct list of substances for the sequence is

	Reaction 1	Reaction 2	Reaction 3	Reaction 4
A	CH ₃ COCl	NaBH ₄	conc H ₂ SO ₄	Cl ₂
В	AlCl ₃	HCl	NaOH	Cl ₂
C	AlCl ₃	NaBH ₄	conc H ₂ SO ₄	HC1
D	AlCl ₃	NaBH ₄	conc H ₂ SO ₄	Cl ₂

15 An equation for the incomplete combustion of butane in oxygen is

$$C_4H_{10} + 4\frac{1}{2}O_2 \rightarrow 4CO + 5H_2O$$

The volume in ${\rm dm}^3$ of oxygen at 295 K and 100 kPa required to burn 0.10 mol of butane to form steam and carbon monoxide only is

A 8.6

B 11

C 12

D 16

16
$$C_6H_5COC1 + C_6H_5OH \rightarrow C_6H_5COOC_6H_5 + HC1$$

 $(M_r = 140.5)$ $(M_r = 198)$

In the reaction above, $1.20\,\mathrm{g}$ of the acyl chloride produced $0.800\,\mathrm{g}$ of the ester. The percentage yield was

- **A** 47.3
- **B** 66.7
- **C** 71.0
- **D** 94.0
- 17 The compound CF₃CHBrCl is a general anaesthetic called halothane. The number of structural isomers, including halothane, having the molecular formula C₂HBrClF₃ is
 - **A** 2
 - **B** 3
 - **C** 4
 - **D** 5
- **18** Which one of the following statements is correct?
 - A HI has a higher boiling point than HCl because HI has stronger hydrogen bonding.
 - **B** PCl₅ is hydrolysed by water to form a weakly acidic solution.
 - C The reducing ability of the halide ions increases as the size of the anion increases.
 - **D** The solubility of the Group II hydroxides decreases as the size of the cation increases.
- 19 Which one of the following statements is correct?
 - **A** $[Al(H_2O)_6]^{3+}(aq)$ will react with an excess of $NH_3(aq)$ to form $[Al(NH_3)_6]^{3+}(aq)$.
 - **B** In the electrolysis of aluminium oxide, aluminium metal and oxygen gas are formed in the mole ratio 2:3.
 - \mathbb{C} When concentrated NH₃(aq) is added to AgBr, $[Ag(NH_3)_2]^+$ (aq) is formed.
 - **D** In the reduction of TiCl₄ by sodium, nitrogen is used as an inert atmosphere.

20 Consider the half-equations given below.

$$VO_{2}^{+}(aq) + 2H^{+}(aq) + e^{-} \rightarrow VO^{2+}(aq) + H_{2}O(l)$$

$$Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightarrow 2Cr^{3+}(aq) + 7H_{2}O(l)$$

$$+1.33$$

$$Co^{3+}(aq) + e^{-} \rightarrow Co^{2+}(aq)$$

$$+1.82$$

Which one of the following statements is **not** correct?

- A When $VO_2^+(aq)$ forms $VO^{2+}(aq)$, the oxidation state of vanadium changes from +5 to +4.
- **B** Acidified potassium dichromate(VI) can oxidise VO²⁺(aq) to VO⁺₂(aq) under standard conditions.
- C The electron arrangement of a Co^{3+} ion is [Ar]3d⁶.
- **D** An acidified solution containing $VO_2^+(aq)$ ions can oxidise $Co^{2+}(aq)$ to $Co^{3+}(aq)$ under standard conditions.

Multiple completion questions

For each of Questions **21** to **40**, **one or more** of the options given may be correct. Select your answer by means of the following code.

- A if 1, 2 and 3 only are correct.
- **B** if **1** and **3** only are correct.
- C if 2 and 4 only are correct.
- **D** if **4** only is correct.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

- 21 A substitution reaction occurs when ammonia reacts with
 - 1 $[Cu(H_2O)_6]^{2+}$
 - **2** BF₃
 - 3 CH₃Br
 - 4 HBr
- 22 Hydrocarbons which contain 85.7% by mass of carbon include

1

2

3

$$\left\langle \right\rangle$$
 — CH_3

4 $H_3C-C \equiv C-CH_3$

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

23 Gas X reacts with gas Y according to the following equation

$$X(g) + Y(g) \rightarrow XY(g)$$

The rate equation for the reaction is

$$rate = k[X][Y]^2$$

At constant temperature, correct statements include

- doubling the concentration of X, keeping the concentration of Y constant, will double the rate of reaction.
- 2 halving the concentration of Y, keeping the concentration of X constant, will decrease the rate by a factor of 8.
- 3 trebling the concentration of both X and Y will increase the rate by a factor of 27.
- 4 quadrupling the concentration of Y, keeping the concentration of X constant, will increase the rate by a factor of 64.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

Questions 24 and 25

The diagrams **P**, **Q**, **R** and **S** show how a change in conditions affects the Maxwell-Boltzmann distribution of molecular energies for gas G. In each case, the original distribution is shown by a solid line and the distribution after a change has been made is shown by a dashed line.

- 24 Correct statements at constant volume include
 - 1 the change shown in diagram **P** occurs when the temperature is decreased.
 - 2 the change shown in diagram **Q** occurs when a catalyst is used.
 - 3 the change shown in diagram **R** occurs when the temperature is increased.
 - 4 the change shown in diagram **S** occurs when the pressure of G is decreased at constant temperature.
- 25 Diagrams that illustrate changes which alter the value of the rate constant for the decomposition of gas G include
 - 1 P
 - 2 Q
 - 3 R
 - 4 S

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

- 26 Substances that form acidic solutions when added to water include
 - 1 AlCl₃
 - **2** Cl₂
 - 3 CH₃COCl
 - 4 NaCl
- 27 Species with at least one bond angle of 90° include
 - $1 XeF_4$
 - 2 PF₅
 - 3 $[Co(NH_3)_6]^{3+}$
 - **4** Si(CH₃)₄
- 28 Solutions that form bubbles of a gas with solid Na₂CO₃ include
 - 1 CH₃CHO(aq)
 - 2 HCOOH(aq)
 - 3 CrCl₂(aq)
 - 4 CrCl₃(aq)
- **29** Chlorine trifluoride can be decomposed into its elements:

2ClF₃(g)
$$\rightleftharpoons$$
 Cl₂(g) + 3F₂(g) $\Delta H^{\circ} = +159 \text{ kJ mol}^{-1}$ colourless gas gas gas

Correct statements include

- 1 the decomposition is a redox reaction.
- when an equilibrium mixture is heated its colour fades.
- 3 when the pressure of an equilibrium mixture is decreased more Cl_2 is formed.
- 4 the decomposition has a negative entropy change.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

30 Consider the following reaction scheme.

Types of mechanism involved in this sequence include

- 1 electrophilic addition.
- 2 electrophilic substitution.
- 3 nucleophilic substitution.
- 4 nucleophilic addition-elimination.

Directions summarised					
A	В	C	D		
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct		

- 31 On melting, covalent bonds must break in
 - 1 poly(ethene).
 - 2 bromine.
 - 3 sulphur dioxide.
 - 4 silicon dioxide.
- 32 The artificial sweetener aspartame has the structure

Correct statements about aspartame include

- 1 it can form a zwitterion.
- 2 it can undergo alkaline hydrolysis.
- 3 it contains an amide link.
- 4 it has three chiral carbon atoms.
- 33 Species that can act as both oxidising and reducing agents include
 - 1 CH₃CHO
 - **2** Fe
 - **3** Fe²⁺
 - 4 Fe^{3+}
- 34 Reactants that form an organic product which has an asymmetric carbon atom include
 - 1 but-2-ene and HBr
 - 2 propanone and NaBH₄
 - 3 propanal and HCN
 - 4 epoxyethane and H_2O

Directions summarised					
A	В	С	D		
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct		

35 Compound X has the following characteristics

- it has an infra-red spectrum with a strong absorption at around 1700 cm⁻¹
- it has a proton n.m.r. spectrum with only two peaks
- it has a mass spectrum with a major peak at m/z = 57

Compound X could be

- 1 butanone.
- **2** pentan-3-one.
- 3 propanal.
- 4 2,2-dimethylpropanal.

36 The drug tamoxifen, which is used in the treatment of cancer, has the structure

$$C = C$$
 CH_2CH_3
 $C = C$
 $CH_3)_2NCH_2CH_2O$

Correct statements about tamoxifen include

- 1 it can undergo electrophilic addition with bromine.
- 2 it has a stereoisomer.
- 3 it can undergo electrophilic substitution with ethanoyl chloride.
- 4 it is insoluble in hydrochloric acid.

Directions summarised					
A	В	C	D		
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct		

37 Ionone, shown below, is a compound responsible for the smell of raspberries.

Mechanisms involved in reactions of ionone include

- 1 electrophilic addition.
- **2** electrophilic substitution.
- 3 nucleophilic addition.
- 4 nucleophilic substitution.

38 Functional group isomers include

1 CH₃CH₂CHBrCH₃ CH₃CH₂CH₂CH₂Br and 2 CH₃CH₂COOH HCOOCH₂CH₃ and 3 CH₃CH₂CH(NH₂)COOH H₂NCH₂CH₂COOH and 4 CH₃CH₂OCH₂CH₃ and CH₃CH(OH)CH₂CH₃

39 Correct statements include

- 1 when SiCl₄ is added to water, a precipitate is formed.
- 2 sulphur has a higher melting point than phosphorus because the intermolecular attractions are stronger.
- 3 when AlCl₃ is dissolved in water, $[Al(H_2O)_5(OH)]^{2+}$ (aq) is one of the ions formed.
- 4 when concentrated H₂SO₄ reacts with solid NaBr, the only gaseous product is HBr.

Directions summarised					
A	В	C	D		
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct		

40 Consider the following reaction, which involves the breaking of only one covalent bond.

$$O_2N-NO_2(g) \rightarrow 2NO_2(g)$$

Correct statements include

- 1 ΔH is positive.
- 2 ΔG is always positive.
- 3 ΔS is positive.
- 4 the reaction is feasible at any temperature.

END OF QUESTIONS

There are no questions printed on this page