

General Certificate of Education
June 2007
Advanced Level Examination

CHEMISTRY

CHM6/W
Unit 6a Synoptic Assessment

Monday 25 June 2007 9.00 am to 10.00 am

For this paper you must have:

- an objective test answer sheet,
- a calculator.

Time allowed: 1 hour

Instructions

- Use a blue or black ball-point pen. Do not use pencil.
- Fill in the boxes at the top of this page.
- Answer all 40 questions.
- For each item there are four responses. When you have selected the response which you think is the best answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book, not on your answer sheet.
- Make sure that you hand in both your answer sheet and this answer book at the end of this examination.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- Each correct answer will score one mark. No deductions will be made for wrong answers.
- This paper carries 10 per cent of the total marks for Advanced Level.

Advice

- Do not spend too long on any question. If you have time at the end, go back and answer any question you missed out.

Multiple choice questions

Each of Questions $\mathbf{1}$ to $\mathbf{2 1}$ consists of a question or an incomplete statement followed by four suggested answers or completions. You are asked to select the most appropriate answer in each case.

Questions 1 and 2

$$
\mathrm{P}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Q}(\mathrm{~g}) \quad \Delta H^{\ominus} \text { is positive }
$$

1 The mole fraction of Q in the above equilibrium can be increased by
A decreasing the temperature.
B adding a catalyst.
C increasing the volume of the reaction vessel.
D increasing the pressure.
21.0 mol of P was placed in a sealed vessel and left until the above equilibrium was established. At equilibrium, a total of 1.5 mol of gas were present. The mole fraction of Q at equilibrium was

A $\quad 0.33$
B 0.50
C 0.67
D 0.75

3 The following compounds all have $M_{\mathrm{r}}=88$. Which one contains over 60% by mass of carbon and also exhibits hydrogen bonding?

A $\quad \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

D

The Periodic Table of the Elements
The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

I	II											III	IV	V	VI	VII	0
1.0 Hydrogen 1		Key															$\left.\right\|_{2} ^{4.0} \begin{gathered} \text { Helium } \end{gathered}$
$\underbrace{6.9}_{3} \mathbf{L i t h i u m}$	9.0 Be Beryllium 4		relative atomic mass atomic number \qquad			```3.9.9 Li```						$\left.\right\|_{5} ^{10.8} \begin{gathered} \text { B } \\ \text { Boron } \end{gathered}$	${ }_{6}^{12.0} \mathrm{C}$	$\underbrace{14.0}_{7} \mathbf{N}$	$\int_{8}^{16.0} \begin{gathered} \text { Oxygen } \end{gathered}$		$\overbrace{10}^{20.2} \begin{gathered} \text { Neon } \\ \text { Neon } \end{gathered}$
$\begin{aligned} & 23.0 \\ & \mathrm{Na} \\ & \text { Sodium } \\ & 11 \end{aligned}$	$\begin{aligned} & 24.3 \\ & \quad \text { Mg } \\ & \text { Magnesium } \\ & 12 \end{aligned}$											$\begin{aligned} & 27.0 \\ & \text { Aluminium } \\ & 13 \end{aligned}$	$\underbrace{28.1}_{14}{ }_{\text {Silicon }}^{\text {Si }}$	31.0 15 Phosphorus	$\begin{array}{\|c} 32.1 \\ \text { Sulphur } \\ 16 \end{array}$	$\underset{\substack{35.5 \\ \text { Chlorine } \\ \hline \\ \hline}}{ }$	${ }_{18}^{39.9} \mathbf{A r} \text { Aron }$
${ }^{39.1} \mathrm{~K}$ Potassium 19	$\begin{gathered} 40.1 \\ \text { Ca } \\ \text { Calcium } \\ 20 \end{gathered}$	$\begin{aligned} & \hline 45.0 \\ & \text { Sc } \\ & \text { Scandium } \\ & 21 \end{aligned}$	$\begin{aligned} & \text { 47.9 } \\ & \text { Ti } \\ & \text { Titanium } \\ & 22 \end{aligned}$	$\begin{aligned} & 50.9 \text { V } \\ & \text { Vanadium } \\ & 23 \end{aligned}$	${ }^{52.0} \mathrm{Cr}$ Chromium 24	54.9 Mn Manganese 25	$\begin{aligned} & \text { 55.8 } \\ & \text { Fe } \\ & \text { Iron } \\ & 26 \end{aligned}$	$\begin{aligned} & \text { 58.9 Co } \\ & \text { Cobalt } \\ & 27 \end{aligned}$	$\begin{array}{\|l} 58.7 \\ \mathbf{N i} \\ \text { Nickel } \\ 28 \end{array}$	$\begin{aligned} & 63.5 \\ & { }_{\text {Cupper }}^{\text {Cup }} \\ & 29 \end{aligned}$	$\begin{array}{\|c} 65.4 \\ \text { Zn } \\ 30 \end{array}$	```69.7 31 Ga Gallium```	72.6 32	$\begin{aligned} & 74.9 \\ & \text { As } \\ & \text { Arsenic } \\ & 33 \end{aligned}$	$\begin{aligned} & 79.0 \\ & \text { Se } \\ & \text { Selenium } \\ & 34 \end{aligned}$	```79.9 Br Bromine 35```	${\underset{\text { Krypton }}{83.8}}_{36}^{\mathbf{K r}}$
$\begin{aligned} & 85.5 \\ & \begin{array}{l} \text { Rb } \\ \text { Rubidium } \\ 37 \end{array} \end{aligned}$	$\begin{array}{\|l} \hline 87.6 \\ \begin{array}{l} \text { Sr } \\ \text { Strontium } \\ 38 \end{array} \end{array}$	${\underset{Y}{\text { Yttrium }}}_{88.9}^{\mathbf{Y}}$	$\begin{aligned} & 91.2 \\ & \text { Zrirconium } \\ & 40 \end{aligned}$	$\begin{aligned} & 92.9 \\ & \mathbf{N b} \\ & \text { Niobium } \\ & 41 \end{aligned}$	95.9 Mo Molybdenum 42	$\begin{aligned} & 98.9 \\ & \text { Tc } \\ & \text { Technetium } \\ & 43 \end{aligned}$	101.1 Ru Ruthenium 44	102.9 Rh Rhodium 45	$\begin{aligned} & 106.4 \\ & \text { Pd } \\ & \text { Palladium } \\ & 46 \end{aligned}$	$\begin{array}{\|c} 107.9 \\ \text { Ag } \\ \text { Silver } \\ 47 \end{array}$	$\begin{aligned} & \begin{array}{l} 112.4 \\ \text { Cadmium } \\ \text { Cadmiun } \\ 48 \end{array} \end{aligned}$	$\begin{aligned} & 114.8 \\ & \text { In } \\ & \text { Indium } \\ & 49 \end{aligned}$	$\begin{array}{\|l} 118.7 \\ \text { Sn } \\ \text { Tin } \\ 50 \end{array}$	$\underset{\text { Antimony }}{121.8}$ 51	```\[127.6 \] Tellurium \[52 \] Te```	$\underbrace{}_{\substack{126.9 \\ \text { I lodine } \\ 53}}$	$\begin{array}{\|c} 131.3 \\ \text { Xe } \\ \text { Xenon } \\ 54 \end{array}$
$\underbrace{}_{\substack{132.9 \\ \text { Caesium } \\ 55}}$	$\begin{aligned} & 137.3 \\ & \text { Ba } \\ & \text { Barium } \\ & 56 \end{aligned}$	$\begin{aligned} & 138.9 \\ & \text { La } \\ & \text { Lanthanum } \\ & 57 \quad \star \end{aligned}$	$\begin{aligned} & 178.5 \\ & \text { Hf } \\ & \text { Hafnium } \end{aligned}$	```\[180.9 \] Tantalum \[73 \] Ta```	$\begin{aligned} & 183.9 \\ & \text { W } \\ & \text { Tungsten } \\ & 74 \end{aligned}$	$\begin{aligned} & 186.2 \\ & \text { Re } \\ & \text { Rhenium } \\ & 75 \end{aligned}$	$\begin{aligned} & 190.2 \\ & \text { Os } \\ & \text { Osmium } \\ & 76 \end{aligned}$	$\begin{array}{\|c} \begin{array}{l} 192.2 \\ \text { Ir } \\ \text { Iridium } \\ 77 \end{array} \end{array}$	$\begin{aligned} & 195.1 \\ & \text { Pt } \\ & \text { Platinum } \\ & 78 \end{aligned}$	$\begin{aligned} & 197.0 \\ & \text { Au } \\ & \text { Gold } \\ & 79 \end{aligned}$		$\begin{aligned} & \hline 204.4 \\ & \text { Thallium } \\ & 81 \end{aligned}$	$\begin{aligned} & 207.2 \\ & \text { Pb } \\ & 82 \end{aligned}$	$\begin{aligned} & 209.0 \\ & \text { Bi ismuth } \\ & 83 \end{aligned}$	$\begin{aligned} & 210.0 \\ & \text { Po } \\ & \text { Polonium } \\ & 84 \end{aligned}$	```210.0 At Astatine 85```	$\begin{aligned} & 222.0 \\ & \begin{array}{c} \text { Rn } \\ \text { Radon } \end{array} \\ & 86 \end{aligned}$
```223.0 Francium 87```	$\begin{gathered} 226.0 \\ \text { Ra } \\ \text { Radium } \\ 88 \end{gathered}$	$\begin{array}{\|c} \hline 227 \\ \text { Actinium } \\ 89 \end{array}$															


$\begin{aligned} & 140.1 \\ & \text { Ce } \\ & \text { Cerium } \\ & 58 \end{aligned}$	$\begin{array}{\|c\|} \hline 140.9 \\ \text { Pr } \end{array}$   Praseodymium $59$	$\begin{gathered} 144.2 \\ \mathrm{Nd} \end{gathered}$   Neodymium 60	$\begin{gathered} 144.9 \\ \text { Pm } \end{gathered}$   Promethium 61	$150.4$ Sm   Samarium $62$	$152.0$ $\qquad$ Europium 63	$\begin{aligned} & 157.3 \\ & \text { Gad } \\ & \text { Gadolinium } \\ & 64 \end{aligned}$	```158.9 Tb Terbium 65```	$\begin{aligned} & \hline \begin{array}{l} 162.5 \\ \text { Dy } \\ \text { Dysprosium } \\ 66 \end{array} \\ & \hline \end{aligned}$	```\}\begin{array}{c}{164.9}\\{\mathrm{ Ho }}\\{\mathrm{ Holmium}}\\{67}```	$\begin{aligned} & 167.3 \\ & \begin{array}{c} \text { Er } \\ \text { Erbium } \\ 68 \end{array} \end{aligned}$	$\begin{aligned} & \text { 168.9 }{ }_{\text {Tm }}^{\text {Thulium }} \\ & 69 \end{aligned}$	$\begin{aligned} & 173.0 \\ & \text { Yb } \\ & \text { Ytterbium } \\ & 70 \end{aligned}$	$\begin{gathered} 175.0 \\ \text { Lutetium } \\ 71 \end{gathered}$
```\[ \stackrel{232.0}{\text { Th }} \] Thorium \[ 90 \]```	Pa   Protactinium 91	$\begin{aligned} & 238.0 \\ & \text { Uranium } \\ & 92 \end{aligned}$	Np   Neptunium 93	$\begin{array}{r} 239.1 \\ \mathbf{P u} \end{array}$   Plutonium 94	Am   Americium 95	96   Cm   Curium	Bk   Berkelium 97	Cf   Californium 98	${ }^{(252)} \text { Es }$   Einsteinium 99	$\begin{aligned} & \text { (257) } \\ & \text { Fm } \\ & \text { Fermium } \\ & 100 \end{aligned}$	Md   Mendelevium 101	No   Nobelium 102	$\begin{aligned} & \hline \mathbf{( 2 6 0 )} \\ & \text { Lr } \\ & \text { Lawrencium } \\ & 103 \end{aligned}$

* 58-71 Lanthanides
† 90-103 Actinides

Gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Table 1
Proton n.m.r chemical shift data

Type of proton	
RCH_{3}	$\mathbf{\delta} \mathbf{p p m}$
$\mathrm{R}_{2} \mathrm{CH}_{2}$	$0.7-1.2$
$\mathrm{R}_{3} \mathrm{CH}$	$1.2-1.4$
RCOCH_{3}	$1.4-1.6$
ROCH_{3}	$2.1-2.6$
RCOOCH_{3}	$3.1-3.9$
ROH	$3.7-4.1$

Table 2
Infra-red absorption data

Bond	Wavenumber/cm ${ }^{\mathbf{- 1}}$
$\mathrm{C}-\mathrm{H}$	$2850-3300$
$\mathrm{C}-\mathrm{C}$	$750-1100$
$\mathrm{C}=\mathrm{C}$	$1620-1680$
$\mathrm{C}=\mathrm{O}$	$1680-1750$
$\mathrm{C}-\mathrm{O}$	$1000-1300$
$\mathrm{O}-\mathrm{H}$ (alcohols)	$3230-3550$
$\mathrm{O}-\mathrm{H}$ (acids)	$2500-3000$

$4 \mathrm{CaCl}_{2}$ (s) has a standard lattice dissociation enthalpy of $+2237 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The standard enthalpy of hydration values for $\mathrm{Ca}^{2+}(\mathrm{g})$ and $\mathrm{Cl}^{-}(\mathrm{g})$ are $-1650 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-364 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively.

The standard enthalpy of solution of $\mathrm{CaCl}_{2}(\mathrm{~s})$ is

A $\quad-223 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B $\quad-141 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C $\quad+141 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D $\quad+223 \mathrm{~kJ} \mathrm{~mol}^{-1}$

5 Ions of two isotopes of the transition metal nickel are shown below.

$$
{ }_{28}^{58} \mathrm{Ni}^{2+} \quad{ }_{28}^{60} \mathrm{Ni}^{2+}
$$

Which one of the following statements is correct?
A The electron arrangement of both these Ni^{2+} ions is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$.
B The ${ }_{28}^{60} \mathrm{Ni}^{2+}$ ion will have more protons in its nucleus than the ${ }_{28}^{58} \mathrm{Ni}^{2+}$ ion.
C In the same strength magnetic field, the ${ }_{28}^{60} \mathrm{Ni}^{2+}$ ion will be deflected more than the ${ }_{28}^{58} \mathrm{Ni}^{2+}$ ion.

D These Ni^{2+} ions have the same number of electrons but a different number of neutrons.

Questions 6 and 7

In questions 6 and $\mathbf{7}$ consider the data below.

$$
\begin{array}{lr}
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) & \begin{array}{r}
\boldsymbol{E} / \mathbf{V} \\
+0.34
\end{array} \\
\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{~s}) & -0.25 \\
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{~s}) & -0.76
\end{array}
$$

6 The e.m.f. of the cell $\mathrm{Cu}(\mathrm{s})\left|\mathrm{Cu}^{2+}(\mathrm{aq}) \| \mathrm{Ni}^{2+}(\mathrm{aq})\right| \mathrm{Ni}(\mathrm{s})$ is
A $\quad 0.59 \mathrm{~V}$
B $\quad 0.09 \mathrm{~V}$
C $\quad-0.09 \mathrm{~V}$
D $\quad-0.59 \mathrm{~V}$

7 Which one of the following reactions occurs?
A $\mathrm{Cu}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
B $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Ni}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Ni}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})$
C $\mathrm{Cu}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ni}(\mathrm{s})$
D $\mathrm{Zn}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Ni}(\mathrm{s})$

Questions 8 and 9

The following reaction is used in industry to prepare aspirin

8 Which one of the following statements about ethanoic anhydride is not correct?
A It has two singlets only in its proton n.m.r. spectrum.
B It undergoes hydrolysis in water to give a single product with a pH value less than 7.
C It has a strong absorption at about $1720 \mathrm{~cm}^{-1}$ in its infra-red spectrum.
D It has a major fragment peak at $m / z=43$ in its mass spectrum.

9 2-Hydroxybenzoic acid and aspirin are both white solids.
Which one of the following would not distinguish between pure samples of these two solids?
A comparing the laboratory-determined melting points to data-book values
B comparing infra-red spectra at $3250 \mathrm{~cm}^{-1}$
C comparing their effects on sodium carbonate
D comparing the m / z values of their molecular ions

10 Which one of the following statements is correct?
A There are only three isomers of dichloropropane.
B There are geometric isomers of 2-methylpent-2-ene.
C There are optical isomers of 2-aminopropanoic acid.
D Enantiomers can be distinguished using the fingerprint region of their infra-red spectra.

11 Aluminium chloride acts as a weak monoprotic acid in aqueous solution and has a K_{a} value of $1.26 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$

What concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of aluminium chloride will produce a solution with a pH value of 2.60 ?

A $\quad 0.0050$
B 0.50
C 0.53
D 2.0

12 Which one of the following statements is correct?
A AlCl_{3} has a higher melting point than $\mathrm{Al}_{2} \mathrm{O}_{3}$
B The $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ dimer contains two co-ordinate bonds.
C AlCl_{3} is pyramidal.
D The AlCl_{3} catalyst acts as an electron pair donor in the acylation of benzene.

13 Which one of the following isomeric alkenes is formed when 3-bromo-2-methylpentane reacts with ethanolic potassium hydroxide?

A 3-methylpent-1-ene
B 3-methylpent-2-ene
C 4-methylpent-2-ene
D 2-ethylbut-1-ene

14 Sulphur dichloride oxide, SOCl_{2}, can be used to convert alcohols into chloroalkanes.

Bond	Mean bond enthalpy/kJ mol ${ }^{\mathbf{- 1}}$
$\mathrm{C}-\mathrm{Cl}$	338
$\mathrm{C}-\mathrm{O}$	364
$\mathrm{H}-\mathrm{Cl}$	431
$\mathrm{O}-\mathrm{H}$	464
$\mathrm{~S}-\mathrm{Cl}$	277
$\mathrm{~S}=\mathrm{O}$	523
$\mathrm{C}-\mathrm{C}$	348
$\mathrm{C}-\mathrm{H}$	412

The enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the gas phase reaction between ethanol and sulphur dichloride oxide using the bond enthalpies given above is

A $\quad-187$

B $\quad-90$
C +90
D +187

Turn over for the next question

Questions 15 to 17

A car airbag contains sodium azide, NaN_{3}, and potassium nitrate.
Sodium azide decomposes to produce nitrogen gas and sodium metal.

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

The sodium produced reacts immediately with the potassium nitrate producing more nitrogen.

$$
10 \mathrm{Na}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+5 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{K}_{2} \mathrm{O}(\mathrm{~s})
$$

15 The total number of moles of nitrogen produced by 1.0 mol of sodium azide in this sequence is
A $\quad 1.0$
B 1.5
C 1.6
D 4.0

16 The number of moles of nitrogen needed to produce a pressure of 200 kPa in an airbag of volume $0.060 \mathrm{~m}^{3}$ at a temperature of $27^{\circ} \mathrm{C}$ is

A $\quad 0.21$
B 4.8
C 54
D 4800

17 An element which undergoes oxidation in the above reactions is
A sodium in NaN_{3}
B potassium in KNO_{3}
C oxygen in KNO_{3}
D nitrogen in NaN_{3}

Questions 18 and 19

Use the curves below, obtained using equal volumes of solutions of two monoprotic acids $\mathbf{H X}$ and HY, to answer Questions 18 and 19.

18 Which one of the following statements about a solution of HX is correct?
A It is less concentrated and contains a weaker acid than the solution of HY.
B It is more concentrated and contains a stronger acid than the solution of HY.
C It is more concentrated and contains a weaker acid than the solution of HY.
D It is less concentrated and contains a stronger acid than the solution of HY.

19 The value, in mol dm ${ }^{-3}$, of K_{a} for the acid HX is
A $\quad 1.3 \times 10^{-2}$
B $\quad 1.0 \times 10^{-3}$
C $\quad 1.3 \times 10^{-5}$
D $\quad 8.3 \times 10^{-6}$

20 Which one of the following statements about carbon monoxide is not correct?
A It has a positive enthalpy of combustion.
B It is formed during the incomplete combustion of alkanes.
C It is oxidised to carbon dioxide when heated strongly with iron(III) oxide.
D Compared with an oxygen molecule, it can form a stronger co-ordinate bond with iron(II) in haemoglobin.

21 Locate the element tungsten (W) in the Periodic Table.
Which one of the following explains why tungsten is a poor catalyst?
A It exists only in one oxidation state.
B It has an incomplete d sub-level.
C It has no active sites on its surface.
D Reacting molecules are adsorbed strongly onto its surface.

Multiple completion questions

For each of Questions 22 to $\mathbf{4 0}$, one or more of the options given may be correct. Select your answer by means of the following code.

A if 1, $\mathbf{2}$ and $\mathbf{3}$ only are correct.
B if $\mathbf{1}$ and $\mathbf{3}$ only are correct.
C if $\mathbf{2}$ and $\mathbf{4}$ only are correct.
D if $\mathbf{4}$ only is correct.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

22 The extraction of titanium from titanium(IV) oxide involves two reactions represented by the following equations

$$
\begin{gathered}
\mathrm{TiO}_{2}+2 \mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{TiCl}_{4}+2 \mathrm{CO} \\
\mathrm{TiCl}_{4}+4 \mathrm{Na} \rightarrow \mathrm{Ti}+4 \mathrm{NaCl}
\end{gathered}
$$

Correct statements about the extraction include
$1 \quad 149.6 \mathrm{~kg}$ of chlorine are needed to make 200.0 kg of titanium(IV) chloride $\left(M_{\mathrm{r}}=189.9\right)$.
2 both of the above equations represent redox reactions.
3 titanium is expensive because the extraction involves a batch process.
4 the second reaction is carried out in an atmosphere of nitrogen to prevent oxidation of the product.

23 Anhydrous compounds of Period 3 elements that react with water to give solutions with a pH value less than 5 include

1 ionic chlorides.
2 covalent chlorides.
3 ionic oxides.
4 covalent oxides.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

24 Correct statements about concentrated sulphuric acid include
1 it reacts with butan-2-ol to form but-1-ene.
2 it is reduced to hydrogen sulphide by solid sodium iodide.
3 it can protonate concentrated nitric acid.
4 it reacts with sodium chloride to form chlorine gas.

Questions 25 to 27 are about the synthesis and reactions of compounds \mathbf{M} and \mathbf{N} shown below.

$\begin{gathered} \mathrm{CH}_{3} \mathrm{COOH} \\ \mathbf{J} \end{gathered}$	$\xrightarrow{\text { Step (i) }}$	$\begin{gathered} \mathrm{ClCH}_{2} \mathrm{COOH} \\ \mathbf{K} \end{gathered}$	$\xrightarrow{\text { Step (ii) }}$	Step (iii)		
				$\mathrm{NCCH}_{2} \mathrm{COOH}$	\longrightarrow	$\mathrm{HOOCCH}_{2} \mathrm{COOH}$
				L		M
				\downarrow Step (iv)		
				${ }_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$		
				N		

25 Correct statements about the reaction scheme include
1 Step (i) could be achieved using chlorine in the presence of ultra-violet light.
2 Step (ii) could be achieved using potassium cyanide.
3 Step (iv) could be achieved using hydrogen in the presence of nickel.
$4 \mathbf{K}$ could be converted directly into \mathbf{N} using ammonia.

26 Correct statements about \mathbf{M} include
1 it can form a condensation polymer with 1,6-diaminohexane.
2 complete reaction of 0.0100 mol of \mathbf{M} requires $10.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$
3 it can act as a bidentate ligand.
4 its systematic name is ethanedioic acid.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

27 Correct statements about \mathbf{N} include
1 it exists as the ion $\mathrm{HOOCCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}$in a solution at pH 14.
2 it reacts with methanol to form a tetraalkylammonium salt.
3 it reacts with ethanoyl chloride to form an ester.
4 it undergoes self-polymerisation.

28 Results which support the identification of an unknown compound as propyl methanoate include
1 a strong absorption in its infra-red spectrum at $1740 \mathrm{~cm}^{-1}$.
2 a singlet peak integrating for three protons in its proton n.m.r. spectrum.
3 the compound contains 54.54% of carbon by mass.
4 it effervesces with sodium hydrogencarbonate.

29 Consider the species in the following equation.

$$
\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

Correct statements include
1 water acts as a Lewis base.
2 the complex ions are both octahedral.
3 the $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion can act as a Brønsted-Lowry acid.
4 the electron arrangement of the Ti^{3+} ion is [Ar$] 4 \mathrm{~s}^{1}$

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

30 Optical isomerism is shown by

1

2

3

4

31 Species with four or more atoms in the same plane include
1 cisplatin.
2 but-2-ene.
3 benzene.

4 an ammonium ion.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

32 For the reaction represented by the equation shown below,

$$
2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

the rate equation is

$$
\text { rate }=k\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}
$$

Assuming that each 10 K rise in temperature doubles the rate, which of the following will increase the rate by a factor of four?

1 a 20 K temperature increase, keeping $\left[\mathrm{H}_{2}\right]$ and $[\mathrm{NO}]$ constant.
2 a 10 K temperature increase with $2 \times\left[\mathrm{H}_{2}\right]$, keeping [NO] constant.
3 no temperature change but with $4 \times\left[\mathrm{H}_{2}\right]$, keeping [NO] constant.
4 a 10 K temperature increase with $2 \times[\mathrm{NO}]$, keeping [H_{2}] constant.

33 Which of the following increase(s) down Group VII?
1 the electronegativity of the halogen
2 the lattice dissociation enthalpy of the sodium halide
3 the oxidising ability of the halogen
4 the strength of the halide ion as a reducing agent

34 Correct statements include
1 the base strength increases from methylamine to ammonia to phenylamine.
2 the melting point increases from pentan-3-one to pentan-2-ol to 2-aminopropanoic acid.
3 the carbon to carbon bond enthalpy increases from ethene to benzene to ethane.
4 the pH of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution increases from sulphuric acid to hydrochloric acid to ethanoic acid.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

35 Solids that have a macromolecular structure include
1 MgO
$2 \quad \mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COONa}$
$3 \quad \mathrm{P}_{4} \mathrm{O}_{10}$
$4 \quad \mathrm{Si}$

36 Equations that represent redox reactions include
$1 \quad \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
$2\left[\mathrm{~V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+2 \mathrm{Cl}^{-}$
$3 \mathrm{Mg}+\mathrm{S} \rightarrow \mathrm{MgS}$
$4 \mathrm{CaCO}_{3}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}+\mathrm{CO}_{2}$

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

Questions 37 and 38

Use the following reaction scheme to answer questions $\mathbf{3 7}$ and 38.

37 Compounds that have stereoisomers include
1 P
2 Q
3 R
4 S

38 Types of reaction in the scheme include
1 dehydration.
2 hydrogenation.
3 esterification.
4 alkylation.

Directions summarised			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ only correct	$\mathbf{1}$ and $\mathbf{3}$ only correct	$\mathbf{2}$ and $\mathbf{4}$ only correct	$\mathbf{4}$ only correct

39 Conversions that require four moles of hydrogen gas per mole of starting material include

1

2

3

4

40 Correct statements about chloroethanoic acid include
1 it gives an immediate white precipitate with silver nitrate solution.
2 it gives a silver mirror with Tollens' reagent.
3 it gives colourless fumes on addition of water.
4 a mixture of acidified potassium dichromate(VI) and the acid remains orange on warming.

END OF QUESTIONS

