ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Chemistry 5421

CHM3/P Practical Examination

Mark Scheme 2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

CHM3/P

Exercise 1 Skill assessed Implementing (8)

1. Points assessed by supervisor during the practical examination
(a) (i) use of the pipette/burette 1 correct use of burette 7 scoring points

2 pipette empties under gravity any $\mathbf{6}=\mathbf{2}$ marks
3 transfers from pipette without spillage any $\mathbf{4}=1$ mark
4 touches surface with pipette
(ii) use of the thermometer 5 bulb immersed

6 stirs mixture
(iii) general

7 does not require additional sample

Notes

- if there is a blank box in the teacher grid assume candidate did not score this point

2. Points assessed from candidate's written report.
(b) recording of results
results recorded clearly and in full in the table
1 mark
Notes

- if you can read it, it is clear
- full means completes the temperature row and box for acid temp correctly
- and there is no entry in the shaded box at the fourth minute
- allow clear answer outside of the box
(c) awareness of precision temperatures recorded appropriately and consistently

Notes precision * allow one error
(d) The accuracy of the temperature rise, measured against a teacher value temperature rise is within 5% of target value
temperature rise is within 8% of target value
temperature rise is within 10% of target value
temperature rise is within 15% of target value

Notes

- teacher grid check best fit lines and temperature rise
average starting temperatures for acid and alkali
determine true temperature rise
if true temp rise different from value quoted on teacher form, underline the quoted value and write the correct temperature rise beside it base all accuracy marks on this correct temperature rise
- student grid repeat steps as for teacher value use the corrected value to assess accuracy
- if staff value is wrong or missing use a group average; complete a discrepancy form
- when calculating a group average ignore wild data

Exercise 1

Skill assessed Analysing (2)

(a) the plotting of the graph
plots points for 0-3 minutes correctly
plots points for 5-10 minutes correctly 7 scoring point
straight line through the points before addition
line through the points after addition is smooth any $\mathbf{6}=\mathbf{2}$ marks*
line through the points is best fit
extrapolation back is a natural extension of the drawn line any $\mathbf{3}=1$ mark
reads the temperature rise correctly from the graph

* must include correct extrapolation
- If graph does not cover half of the paper :-
maximum score is 1 mark
write scale on the candidate's graph
mark up to first 3 correct points only
do not penalise again under nomenclature
- If the graph plot goes off the squared paper maximum score is 1 mark; do not penalise again under nomenclature
- If axes unlabelled use data to decide that temperature is on y axis
- Allow one incorrectly plotted point in each part
- "smooth" means straight for a straight line
- give best fit point if the student's extrapolation is close to your extrapolation
- "Correct extrapolation" means correct line to 4 minute ordinate

Total 2 marks

Exercise 2 Skill assessed Analysing (6)

Q2 volume for 0.10 g is $47.0-48.0 \mathrm{~cm}^{3}$

Notes

- Do not allow other answers

Q3 $\quad \mathrm{PV}=\mathrm{nRT}$
1 mark

Q4 $100 \times 10^{3} \times 47.5 \times 10^{-6}=\frac{0.1}{M_{\mathrm{r}}} \times 8.31 \times 373$

$$
M_{r}=66.0-64.5
$$

1 mark

Notes

- Consequential marking from answer to Q2
- Do not award this mark if candidate gets the correct answer by an incorrect method; don't penalise again in awarding the nomenclature mark

Q5 errors balance $0.01 / 0.1 \times 100=10 \% \quad 3$ scoring points syringe $\quad 1 / 47-48 \times 100=2.1 \% \quad$ any $\mathbf{2}=\mathbf{1}$ mark

Notes

- Ignore precision of answers
- Consequential marking for volume from Q2 and for overall error
- Penalise doubled errors once
- Lose mark if answers wrong because (x 100) missing from calculations;
don't penalise again in awarding the nomenclature mark
- Which error being calculated is not stated; allow if the calculations are in the same order as in the question (balance, syringe). And do not penalise in nomenclature
(a) The appreciation of precision quotes volume as integer or to $1 \mathrm{dp} \quad 2$ scoring points
quotes M_{r} to 1 dp both $=1$ mark
Notes
- If no answer to part 4 can't score this mark
(b) the correct use of nomenclature and terminology

3 scoring points
second graph has sharp trace
all 3 = 1 mark
explains the calculation of the M_{r} clearly and logically
explains the calculation of the errors clearly
explains the calculation of the M_{r} clearly and logically
explains the calculation of the errors clearly

Notes

- Incorrect units mean the nomenclature mark is lost
- Don't penalise missing units
- Two blank sections mean the nomenclature mark is lost
- Answer given in part 4 or 5 without working means the nomenclature mark is lost
- Do not penalise for wrong calculation in Part 4 if explained clearly

Exercise 2 Skill assessed Evaluating(6)

Q1. ignores result at 0.09 g when plotting graph 2 scoring points line goes through the origin (\pm half a square)
both $=1$ mark
1 mark
lines good/ can extrapolate with confidence/ technique good/ results consistent or reliable

Notes

- Allow first point in written answer to Q1 or clearly from the graph; any contradictions loses mark
- Must make a clear written comment for final point

Q 2 . difference is 6.0-7.4
2 scoring points
against 72.0 is a 8.3 to 10.3% error both $=1$ mark
Notes

- Lose mark if no evidence of working in second part
- Ignore precision of answers
- Allow consequential answer from part 4 of Analysis
- Difference must be clearly stated
- Lose mark if the candidate answers a different question
- Using 78.5 gives difference is 6.5 , and a 9.0% error

Q3. need more accurate mass
one error and appropriate use a 3 fig balance etc or a balance with more precision
improvement = $\mathbf{1}$ mark
maintain constant temperature better prevent heat loss from oven by better insulation/use a steam jacket
incomplete vaporisation
use a higher temperature or allow longer time (to equilibrate) or use longer needle
compound associates/ dissociates
use a higher/ lower temperature
syringe sticks
rotate syringe
Notes

- Do not allow \quad| more accurate balance |
| :--- |
| more accurate thermometer |
| collect more gas |
| repeat experiment |

Q4 $\begin{array}{ll}\frac{\text { volume lower than expected (as some liquid lost) }}{\text { calculated } M_{r}} \text { would be larger } & \mathbf{1} \text { mark } \\ \mathbf{1} \text { mark }\end{array}$
calculated M_{r} would be larger
Notes

- Mark points independently
- Accept less gas produced

Total 6 marks

Exercise 3 Skill assessed Planning (8)

1,2 The scale of working used (s)
(s)
appreciates $2: 1$ reaction acid to carbonate
realises Group I metal carbonate should be approx $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$
appreciates M_{r} between 100 and 150
specifies volume of solution $-100-500 \mathrm{~cm}^{3}$
calculates appropriate mass ($5-7.5 \mathrm{~g} / \mathrm{dm}^{3}$)

Notes

- If candidate writes 2:1 reaction acid to carbonate, scores first point regardless
- If candidate writes 2:1 reaction without qualification and chosen concentration is correct scores both first and second points
- If candidate writes 2:1 reaction without qualification and chosen concentration is incorrect scores neither first nor second point
- Allow 0.03-0.07 mol dm ${ }^{-3}$
- In last point allow consequential answer from second point
- If calculates mass needed for $25 \mathrm{~cm}^{3}$ loses fourth scoring point

3 The method used (m)
max 7 scoring points
(m)
appropriate washing and cleaning
weighs appropriate mass
suitable balance must quote number of places (≥ 2) or precision is implicit in mass used
dissolves in water
uses graduated flask of appropriate volume volume can be mentioned in scale section includes washings
makes up to mark
shakes well

Notes

- If no mass calculated in part 2 then allow weigh any amount;
- If mass mentioned in part 2 must weigh this mass
- Can prepare solution in volumetric flask; see end

4 Use of indicator (i)
2 scoring points (i) few drops (2-5) yellow to orange/ red/ pink

5 The use of results (r)
4 scoring points (r)
calculates moles of acid deduces moles of carbonate calculates concentration of carbonate calculates M_{r} of carbonate

Notes

- Candidate can use invented figures or algebra but must show each step unambiguously using relevant data. Statements such as "use the titration result to calculate the moles of acid used" do not score the point
- Candidates making $25 \mathrm{~cm}^{3}$ of solution can score last 2 points by correct calculation of from mass/moles

6 The appreciation of likely hazards and safety precautions (h)
 2 scoring points (h)
 reagents harmful / corrosive / irritant wash spillages with cold water/ wear gloves eye protection/ pipette filler

Notes

- Need hazard and sensible precaution for point 1
- Second sensible precaution for point 2
- Mark points independently

GRADING

20 scoring points

$18-20$	scores	8 marks	$9-11$	scores	4 marks
$16-17$	scores	7 marks	$6-8$	scores	3 marks
$14-15$	scores	6 marks	$3-5$	scores	2 marks
$12-13$	scores	5 marks	$1-2$	scores	1 mark

Exercise 3 Skill assessed Planning cont

Alternative marking scheme if candidate prepares standard solution in the volumetric flask
3 appropriate washing and cleaning
(m)
weighs appropriate mass
accurate balance
adds sample to $250 \mathrm{~cm}^{3}$ graduated flask
includes washings or weigh by difference
dissolves sample
makes up to mark
shakes well

