Surname		Other	Names			
Centre Number			Candida	ate Number		
Candidate Signature						

General Certificate of Education January 2005 Advanced Level Examination

CHEMISTRY Unit 6a Synoptic Assessment

Tuesday 25 January 2005 Afternoon Session

In addition to this paper you will require:

- · an objective test answer sheet;
- · a black ball-point pen;
- · a calculator.

Time allowed: 1 hour

Instructions

- Use a black ball-point pen. Do **not** use pencil.
- Fill in the boxes at the top of this page.
- Answer all 40 questions.
- For each item there are four responses. When you have selected the response which you think is the best answer to a question, mark this response on your answer sheet.

CHM6/W

- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book, **not** on your answer sheet.
- Make sure that you hand in **both** your answer sheet **and** this question paper at the end of this examination.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 40.
- Each correct answer will score one mark. No deductions will be made for wrong answers.
- This paper carries 10 per cent of the total marks for Advanced Level.
- The following data may be required. Gas constant $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

Advice

• Do not spend too long on any question. If you have time at the end, go back and answer any question you missed out.

NO QUESTIONS APPEAR ON THIS PAGE

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

				Ι				1				
0	4.0 He Helium 2	20.2 Ne	Neon 10	39.9 Ar	Argon 18	83.8 K	Krypton 36	131.3 Xe	Xenon 54	222.0 Rn	Radon 86	
=		0.0 ⊤	-Iuorine	5.5	Shlorine 7	9.9 P	3romine 5	6.95 –	lodine 3	210.0 At	Astatine 85	
>		16.0 O	Oxygen 8	32.1 S	Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 84	
>		14.0 N	Nitrogen 7	31.0 P	Phosphorus 15	74.9 As	Arsenic 33	121.8 Sb	Antimony 51	209.0 Bi	Bismuth 83	
≥		12.0 C	Boron Carbon Nitrogen Oxygen I 5 6 7 8 9	28.1 Si	Silicon 14	72.6 Ge	Germanium 32	118.7 Sn	Tin 50	207.2 Pb	Lead 82	
≡		10.8 B	Boron 5	27.0 AI	Aluminium 13	69.7 Ga	Gallium 31	114.8 In	Indium 49	204.4 TI	Thallium 81	
						65.4 Zn	Zinc 30	112.4 Cd	Cadmium 48	200.6 Hg	Mercury 80	
						l			Silver 47			
						58.7 Ni	Nickel 28	106.4 Pd	Palladium 46	195.1 P	Platinum 78	
						58.9 Co	e Iron Cobalt 26 27	102.9 Rh	Rhodium 45	192.2 r	Iridium 77	
						55.8 Fe	Iron 26	101.1 Ru	Ruthenium 44	190.2 Os	Osmium 76	
		6.9 Li	Lithium 3			54.9 Mn	Manganes 25	38.9 Tc	Technetiun 43	186.2 Re	⊏	
		188 ——				52.0 Cr		95.9 Mo	_	183.9 W	Tungsten 74	
		relative atomic mass	umber —			50.9 V	_	92.9 Nb		180.9 Ta	Tantalum 73	
	Key	relative s	atomic number			47.9 Ti	Titanium 22	91.2 Zr	Zirconium 40	178.5 H	Hafnium 72	
						45.0 Sc	Scandium 21	8 8.9		138.9 La	Lanthanum 57 * 7	227 Ac Actinium 89 †
=		9.0 Be	Beryllium 4	24.3 Mg	Magnesium 12	40.1 Ca		87.6 Sr	Strontium 38	137.3 Ba		226.0 Ra Radium 88
-	1.0 H Hydrogen	6.9 Li	Lithium 3	23.0 Na	Sodium 11	39.1 X	_	85.5 Rb		132.9 Cs	_	223.0 Fr Francium 87

	140.1 Ce	Ce Pr 144.2 144.2 Ce Pr Nd Pr	144.2 Nd	144.9 Pm	150.4 Sm	152.0 Eu	157.3 Gd		162.5 Dy	164.9 Ho	167.3 Er	168.9 Tm	173.0 Yb	175.0 Lu
36 - / I Lanmanides	Cerium 58	Praseodymium Neodymium Promethium 59 60 61	Neodymium 60					Terbium 65	Dysprosium 66	Holmium 67	Erbium 68			Lutetium 71
400 4	232.0 Th	232.0 231.0 238.0 Th Pa U	238.0 237.0 U N	_ م	239.1 Pu	243.1 Am	_	- ≍		(252) Es	(257) Fm	(258) Md	(259) No	(260) Lr
7 90 - 103 Actimides	Thorium 90	Protactinium Uranium 91 92	Uranium 92	Neptunium 93	F	Americium 95		Berkelium 97		Einsteinium 99	Fermium 100	<u> </u>		Lawrencium 103

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

Multiple choice questions

Each of Questions 1 to 20 consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

Questions 1 and 2

Questions 1 and 2 are about the reaction given below.

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

Enthalpy data for the reacting species are given in the table below.

Substance	CO(g)	$H_2O(g)$	CO ₂ (g)	H ₂ (g)
$\Delta H_{\rm f}^{\Theta}/{\rm kJmol}^{-1}$	-110	-242	-394	0

1 The standard enthalpy change for this reaction of carbon monoxide and steam is

 $\mathbf{A} +42 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

 $\mathbf{B} \qquad -42 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

 \mathbf{C} +262 kJ mol⁻¹

 \mathbf{D} $-262 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

- **2** Which one of the following statements is **not** correct?
 - **A** The value of K_p changes when the temperature changes.
 - **B** The activation energy decreases when the temperature is increased.
 - C The entropy change is more positive when the water is liquid rather than gaseous.
 - **D** The enthalpy change is more positive when the water is liquid rather than gaseous.

3 Use the information below to answer this question.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\ominus} = -394 \text{ kJ mol}^{-1}$
 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$ $\Delta H^{\ominus} = -286 \text{ kJ mol}^{-1}$
 $4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$ $\Delta H^{\ominus} = -126 \text{ kJ mol}^{-1}$

The standard enthalpy of combustion of butane, in $kJ \, mol^{-1}$, is

- **A** –2880
- **B** –2590
- **C** -806
- **D** -554

4 Chlorine has two isotopes, ³⁵Cl and ³⁷Cl. The number of molecular ion peaks in the mass spectrum of a sample of Cl₂ is

- **A** 2
- **B** 3
- **C** 4
- **D** 5

5 Which one of the following statements is **not** correct?

- **A** The first ionisation energy of iron is greater than its second ionisation energy.
- **B** The magnitude of the lattice enthalpy of magnesium oxide is greater than that of barium oxide.
- C The oxidation state of iron in $[Fe(CN)_6]^{3-}$ is greater than the oxidation state of copper in $[CuCl_2]^-$
- **D** The boiling point of C₃H₈ is lower than that of CH₃CH₂OH

Questions 6 and 7

In questions 6 and 7 consider the data below.

$$E^{\ominus}/V$$
 $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$ +0.80
 $2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ 0.00
 $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ -0.13

- 6 The e.m.f. of the cell $Ag(s)|Ag^{+}(aq)||Pb^{2+}(aq)|Pb(s)$ is
 - **A** 0.93 V
 - **B** 0.67 V
 - C -0.67 V
 - D 0.93 V
- 7 The e.m.f. of the cell $Pt(s)|H_2(g)|H^+(aq)||Ag^+(aq)|Ag(s)$ would be increased by
 - **A** increasing the concentration of $H^+(aq)$.
 - **B** increasing the surface area of the Pt electrode.
 - \mathbf{C} increasing the concentration of $\mathrm{Ag}^+(\mathrm{aq})$.
 - **D** decreasing the pressure of $H_2(g)$.

TURN OVER FOR THE NEXT QUESTION

- **8** Which one of the following reactions will **not** occur?
 - **A** $Al(OH)_3(s) + 3OH^-(aq) \rightarrow [Al(OH)_6]^{3-}(aq)$
 - **B** $Al(OH)_3(s) + 3H^+(aq) + 3H_2O(l) \rightarrow [Al(H_2O)_6]^{3+}(aq)$
 - $\textbf{C} \hspace{0.5cm} 8HBr(g) + H_2SO_4(l) \hspace{0.1cm} \boldsymbol{\rightarrow} \hspace{0.1cm} 4Br_2(g) + H_2S(g) + 4H_2O(l)$
 - **D** $AgBr(s) + 2S_2O_3^{2-}(aq) \rightarrow [Ag(S_2O_3)_2]^{3-}(aq) + Br^{-}(aq)$
- 9 A $0.0720\,\mathrm{g}$ sample of reducing agent **R** was dissolved in water and acidified with an excess of dilute H_2SO_4 . The resulting solution was found to react with exactly $18.0\,\mathrm{cm}^3$ of a $0.0200\,\mathrm{mol\,dm}^{-3}$ solution of KMnO₄.

In this reaction, 5 mol of **R** react with 3 mol of KMnO₄. The M_r of **R** is

- **A** 120
- **B** 167
- **C** 240
- **D** 333
- 10 Which one of the following pairs forms a white precipitate when mixed?
 - **A** NaCl(aq) and NaOH(aq)
 - **B** CuSO₄(aq) and BaCl₂(aq)
 - \mathbf{C} KF(aq) and AgNO₃(aq)
 - \mathbf{D} CoCl₂(aq) and Na₂CO₃(aq)

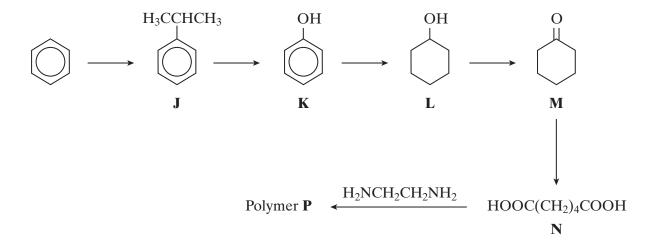
11 A disproportionation reaction occurs when a species \mathbf{M}^+ spontaneously undergoes simultaneous oxidation and reduction.

$$2M^+(aq) \rightarrow M^{2+}(aq) + M(s)$$

The table below contains E^{Θ} data for copper and mercury species.

	E [⊕] /V
$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$	+ 0.15
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+ 0.52
$Hg^{2+}(aq) + e^- \rightarrow Hg^+(aq)$	+ 0.91
$Hg^{+}(aq) + e^{-} \rightarrow Hg(l)$	+ 0.80

Using these data, which one of the following can be predicted?


- **A** Both Cu(I) and Hg(I) undergo disproportionation.
- **B** Only Cu(I) undergoes disproportionation.
- C Only Hg(I) undergoes disproportionation.
- **D** Neither Cu(I) nor Hg(I) undergoes disproportionation.
- 12 The vanadium does **not** have an oxidation state of +3 in
 - **A** $[V(H_2O)_6]^{3+}$
 - **B** $[V(C_2O_4)_3]^{3-}$
 - \mathbf{C} [V(OH)₃(H₂O)₃]
 - $\mathbf{D} \quad [VCl_4]^{3-}$

13 In which one of the following mixtures does a redox reaction occur?

	A	ethanal and Tollens' reagent
	В	ethanoyl chloride and ethanol
	C	ethanal and hydrogen cyanide
	D	ethanoic acid and sodium hydroxide
14	The j	percentage by mass of carbon is 83.3% in
	A	propane.
	В	butane.
	C	pentane.
	D	hexane.
15	Prop	anone can be reduced to form an alcohol. A functional group isomer of the alcohol formed is
	A	CH ₃ CH ₂ CH ₂ OH
	В	CH ₃ CH ₂ CHO
	C	CH ₃ OCH ₂ CH ₃
	D	CH ₃ COCH ₃
16	-	anoic acid reacts with methanol in the presence of a small amount of concentrated nuric acid. The empirical formula of the ester formed is
	A	CH_2O
	В	$C_2H_6O_2$
	C	$C_2H_4O_2$
	D	C_2H_4O

Questions 17 to 20

Questions 17 to 20 are about the following reaction scheme which shows the preparation of polymer P.

- Which one of the following statements is **not** correct?
 - **A** The conversion of benzene into \mathbf{J} is alkylation.
 - $\bf B$ The mechanism for the conversion of benzene into $\bf J$ is electrophilic substitution.
 - **C** The conversion of **K** into **L** is oxidation.
 - **D** The conversion of **L** into **M** is oxidation.
- **18** If 1.0 kg of benzene gave 0.98 kg of **J**, the percentage yield of **J** was
 - **A** 64
 - **B** 66
 - **C** 68
 - **D** 70
- **19 K** is a weak acid with a p K_a of 9.95. The pH of a 0.10 mol dm⁻³ solution of **K** is
 - **A** 4.48
 - **B** 4.98
 - **C** 5.48
 - **D** 5.98

- 20 Polymer **P** is formed in a two-step reaction from **N**. The first stage is a neutralisation reaction. The volume, in cm³, of a $0.20 \, \text{mol dm}^{-3}$ solution of $H_2NCH_2CH_2NH_2$ required to neutralise $6.8 \times 10^{-3} \, \text{mol}$ of the acid **N** is
 - **A** 17
 - **B** 34
 - **C** 68
 - **D** 136

Multiple completion questions

For each of Questions **21** to **40**, **one or more** of the options given may be correct. Select your answer by means of the following code.

- A if 1, 2 and 3 only are correct.
- **B** if **1** and **3** only are correct.
- C if 2 and 4 only are correct.
- **D** if **4** only is correct.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

Questions 21 and 22

In the presence of a catalyst, methanol can be synthesised from carbon monoxide and hydrogen according to the equation

$$CO(g) + 2H_2(g) \implies CH_3OH(g)$$

Thermodynamic data are given below.

Substance	$\Delta \boldsymbol{H_{\mathrm{f}}}^{\Theta}/\mathrm{kJ}\mathrm{mol}^{-1}$	$S^{\Theta}/JK^{-1} \text{mol}^{-1}$
CO(g)	-110	198
$H_2(g)$	0	131
$CH_3OH(g)$	-201	240

- 21 Correct statements about this reaction at 300 K include
 - 1 the standard enthalpy change is -91 kJ mol^{-1} .
 - 2 the standard entropy change is $-220 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$.
 - 3 the standard free-energy change is $-25 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$.
 - 4 the reaction is not feasible at temperatures below 42 K.
- 22 The yield of this reaction is increased by
 - 1 a decrease in pressure.
 - 2 liquefying the product.
 - **3** the addition of a catalyst.
 - 4 a decrease in temperature.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

23 Processes accompanied by a decrease in entropy include

- 1 the formation of ammonia from nitrogen and hydrogen.
- 2 the melting of ice.
- 3 the formation of N_2O_4 gas from NO_2 gas.
- 4 the reaction of ethanedioate ions with $Cu^{2+}(aq)$ ions.

24 Correct statements include

- 1 Na atoms are larger than Mg atoms.
- 2 Mg^{2+} ions are smaller than Na^+ ions.
- 3 S atoms are larger than Cl atoms.
- 4 Cl^- ions are larger than S^{2-} ions.

25 Consider the following conversion.

Correct statements about this conversion include

- 1 the entropy change in the reaction is likely to be small.
- 2 the enthalpy change in the reaction is likely to be small.
- **3** the reaction is catalysed by acids.
- 4 if 1g of **T** gives 1g of **U** the yield for the conversion is 100%.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

- 26 Redox reactions include
 - 1 $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$
 - $2 \qquad \text{Cl}_2 + 2\text{OH}^- \rightarrow \text{Cl}^- + \text{ClO}^- + \text{H}_2\text{O}$
 - $3 \quad I^- + H_2SO_4 \rightarrow HI + HSO_4^-$
 - 4 $S_2O_8^{2-} + 2I^- \rightarrow I_2 + 2SO_4^{2-}$
- 27 Substances that form an alkaline solution in water include
 - 1 P₂O₅
 - **2** CaO
 - 3 HOCH₂CH₂OH
 - 4 CH_3NH_2
- **28** For which of the following substances will 0.125 mol of oxygen be enough for complete combustion?
 - 1 0.21 mol of magnesium
 - 2 0.19 mol of aluminium
 - 3 0.12 mol of carbon
 - 4 0.075 mol of methane
- 29 Structures with a central atom having a co-ordination number of 6 and an oxidation state of +2 include
 - 1 $\left[\text{Cu}(\text{C}_2\text{O}_4)_3 \right]^{4-}$
 - 2 $[Co(CN)_5(H_2O)]^{3-}$
 - **3** [Ni(EDTA)]²⁻
 - 4 $[Fe(CN)_6]^{3-}$

Directions summarised				
A	В	C	D	
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct	

- 30 The types of bonding in methylammonium chloride include
 - 1 ionic.
 - **2** co-ordinate.
 - 3 covalent.
 - 4 hydrogen.
- 31 Methylamine reacts with
 - 1 ethene.
 - **2** ethanoyl chloride.
 - 3 benzene.
 - 4 bromoethane.
- 32 Possible products formed when methylamine reacts with aqueous cobalt(II) chloride include
 - 1 $\left[\text{Co}(\text{CH}_3\text{NH}_2)_6\right]^{2+}$
 - 2 $[Co(CH_3NH_3Cl)_6]^{2+}$
 - 3 $[Co(CH_3NH_2)_2(H_2O)_4]^{2+}$
 - 4 $[Co(CH_3NH_3)_6]^{2+}$
- 33 A major peak at m/z = 43 occurs in the mass spectrum of
 - 1 pentan-3-one.
 - **2** pentan-2-one.
 - **3** 2-methylpentan-3-one.
 - 4 phenylethanone.

Directions summarised				
A	В	C	D	
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct	

34 The repeating unit of a polymer is shown below.

This polymer has

- 1 van der Waals' forces.
- 2 hydrogen bonding.
- **3** dipole-dipole attractions.
- 4 ionic bonding.

35 Values that show an increase from left to right include

- 1 the boiling points of CH₃COCH₃, CH₃COOH and H₂NCH₂COOH
- 2 the boiling points of CH₃CH₂CH₂CH₂CH₃, (CH₃)₂CHCH₂CH₃ and (CH₃)₄C
- 3 the n.m.r. δ values of the underlined protons in Si(CH₃)₄, CH₃CH₂CH₃ and CH₃COOCH₃
- 4 the bond angles in CH₄, NH₃ and H₂O
- 36 Correct statements about the following compound include

- 1 it exists as a pair of stereoisomers.
- 2 it has an absorption in the infrared at about 3350 cm⁻¹.
- 3 it can be oxidised with acidified potassium dichromate(VI).
- 4 it can form hydrogen bonds.

Directions summarised				
A	В	C	D	
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct	

- 37 Compounds with two singlets in the proton n.m.r. spectrum include
 - 1 ethane.
 - **2** ethanoic acid.
 - **3** ethanol.
 - **4** ethane-1,2-diol.
- 38 Limonene has the structure shown below.

Correct statements about limonene include

- 1 it has an empirical formula of C₅H₈
- 2 it has van der Waals' forces between its molecules.
- 3 one mole of limonene reacts with two moles of hydrogen bromide.
- 4 one mole of limonene requires four moles of hydrogen gas to become completely saturated.

Directions summarised				
A	В	C	D	
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct	

Questions 39 and 40

Use the information below to answer questions 39 and 40

Limonene, which occurs in citrus fruits, belongs to a class of natural products called terpenes. The conversion of limonene into compound \mathbf{X} , via a bromoalkane intermediate, is shown below. Compound \mathbf{X} can be used in cough medicine.

- 39 Types of mechanism shown in the reactions above include
 - 1 electrophilic addition.
 - 2 nucleophilic addition.
 - 3 nucleophilic substitution.
 - 4 electrophilic substitution.
- 40 Correct statements about compound X include
 - 1 it exhibits hydrogen bonding between its molecules.
 - 2 it is dehydrated by hot concentrated sulphuric acid.
 - 3 it reacts with ethanoyl chloride to produce an ester.
 - 4 it is oxidised by acidified potassium dichromate(VI).

END OF QUESTIONS

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE