GCE AS MARKING SCHEME

SUMMER 2016

BIOLOGY - NEW AS UNIT 2
 2400U20-1

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS BIOLOGY
 UNIT 2
 MARK SCHEME GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark (apart from the questions where a level of response mark scheme is applied).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement. Award the middle mark in the level if most of the content statements are given and the communication statement is partially met. Award the lower mark if only the content statements are matched.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

```
cao = correct answer only
ecf = error carried forward
```

bod $=$ benefit of doubt

Question			Marking Details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1	(a)	i		60000 : 1 Accept correct ratio not to 1 e.g. 120000:2		1		1	1	
		ii	Advantage: Any one from: Reduces water loss/ allows them to live in arid conditions (1) No \{blood / circulatory system/ pigment\} required (1) Oxygen supplied directly to the cells/ muscles (1) Tracheoles go directly into cells/ tissues (1) Disadvantage: Size/ shape limitation (1)	2			2			
	(b)		Any 3 (x1) from: - Diffusion of gases related to Surface Area (1) - Oxygen use related to volume (1) - Amoeba has large Surface Area : volume ratio (1) - Therefore diffusion of gases sufficient (to supply demand) (1) - Short diffusion distance (1)	3			3			
	(c)		Ventilation (movements/system)/ description of replacing oxygen in alveoli/ ORA for carbon dioxide (1) \{Blood/ transport system\} (takes oxygen away from respiratory surface)/ ORA for carbon dioxide/ or description of (1)	2			2			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
2	(a)	i		Hypothesis 2, Because all three mutations only occur once. (In hypothesis 1 would need to occur twice)/ mutations occur just before the branch of mammals and dolphins/ OWTTE		1		1		
		ii	Compare amino acid \{sequence/ order\} in a (specific) protein (1) Greater similarity more closely related/ more recent common ancestor (1) OR Antibody antigen precipitation test(1) More precipitate the more related they are (1)	2			2		2	
	(b)	i	Any three (x1)from: - HIV 1 has evolved from chimp (SIV) (1) - HIV2 has evolved from monkey (SIV) (1) - HIV1 and HIV 2 have evolved several times/ 5 strains of HIV (1) - 3 different origins for HIV1/ 2 different origins for HIV2 (1) - All forms of HIV from one common ancestor (1) must be correct context			3	3			
		ii	Predict when next mutation may occur	1			1			
		iii	SIV must have been evolving for a longer period/ ORA			1	1			
			Question 2 total	3	1	4	8	0	2	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
3	(a)	i		Dependent Variable = numbers of each species (1) Independent Variable = (presence of) pollution (1)	2			2		2
		ii	Some easier to catch than others / misidentification/ recounting/ they move around/ camouflaged	1			1		1	
		iii	$\begin{aligned} & \text { Calculation of } \mathrm{N}(\mathrm{~N}-1)=22350(1) \\ & \text { Calculation } \sum \mathrm{n}(\mathrm{n}-1)=6926 \text { (1) } \\ & \text { calculation diversity index }=0.69 \text { (1) } \end{aligned}$		3		3	3		
		iv	biodiversity was low(er)/ the \{number/types\} of species were low(er).		1		1			
		V	There had been a mathematical error (1) highest possible diversity index is 1 (1)		2		2	2		
	(b)	i	Any two (x1) from: The existence of a number of distinct (inherited) varieties (coexisting in the same population in a single species)/ snails \{are different colours/ have different bands\}/ different morphology/ different phenotypes(1) at frequencies too great to be explained by recurrent mutation (1) multiple alleles for the same gene(1)	2			2			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
3	b	ii		- Different \{colours / banding/ features\} give (a selective) advantage in different habitats/ different colours are camouflaged in different habitats (1) - Habitats vary depending on times of the \{year / seasons\} and so different colours will have an advantage (1) - \{Main predator / thrush\} will predate different forms of the snail in \{different areas / different seasons\} (1)		3		3		
			Question 3 total	5	9	0	14	5	3	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
4	(a)	i		Some water used by \{photosynthesis/metabolic reactions\}/ water produced in respiration/ measures the rate of absorption not the rate of transpiration		1		1		
		ii	Any 3 (x1) from: humidity/ or description (1) wind/ air currents (1) surface area of leaves (1) age of leaves (1) Accept air pressure NOT same number/ mass of leaves/ length of stem/ plant	2	1		3		3	
	(b)		Lower surface of oak leaf shaded/ or description of/ ORA (1) so higher density of stomata to reduce water loss (1) OR neither surface of wheat shaded/ or description of (1) equal distribution of stomata water loss equal both sides (1)		2		2			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)			1. (Potassium ions/ malate) reduce water potential in (guard) cell (1) Accept osmotic pressure increases/ osmotic potential decreases/ solute potential decreases/ hypertonic to outside 2. water moves in by osmosis (down water potential gradient) (1) 3. (Turgor) pressure inside (guard) cell increases/ cells become turgid (1) NOT cells expand 4. ends of guard cell have a thinner wall than centre/ ORA (1) 5. ends of guard cell expand and stomata opens (1)	3		2	5		
(d)	i	$\begin{gathered} 2 \times \pi \times 2 \times 423=5312.9(1) \\ =5310(\text { to } 3 \text { sig figs })(1) \end{gathered}$ Allow 5320 if they use value of π from calculator. 5310/5320 = 2 marks 5312.9/5313/5315.6/5316 = 1 mark Evidence of $2 \pi r \times 423=1$ mark		2		2	2		
	ii	(water molecules) escape more readily from) species B because it has larger (total) circumference. Ecf if calculation incorrect in (i)		1		1			
		Question 4 total	5	7	2	14	2	3	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
5	(a)	i		$\% \mathrm{O}_{2}$ saturation stays above 95% at altitudes/ O_{2} affinity stays high up to $1500 \mathrm{~m} /$ Enables humans to \{live/ survive\} at altitude		1		1		
		ii	Increased red blood cell count/ more haemoglobin/ haemoglobin has an increased affinity for oxygen		1		1			
		iii	(gut lumen) highly anaerobic/ low concentration of oxygen (in gut) (1) higher affinity (for O_{2} than humans)/ can absorb any available O_{2} / higher saturation at lower partial pressures (1)		2					
	(b)	i	\{Structures / molecules\} with no close phylogenetic links / have evolved from different origins/ different structures/ ref to analogous structures(1) adapted to carry out \{same/ similar\} function (1)	2			2			
		ii	As temp rises $\left\{\right.$ higher ppO_{2} / higher concentration of oxygen\} (needed \{to fully saturate/ reach saturation/ reach 96\%\}).		1		2			
		iii	As temperature rises more O_{2} released (to tissues).		1		1			
			Question 5 total	2	6	0	8	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
6	(a)	i		K^{+}(mainly) transported (upwards) in xylem (1) K^{+}only moves \{laterally / sideways\} into phloem from xylem/ K^{+}does not move up or down in the phloem (1)			2	2		
		ii	To show that the waxed paper stops the movement/ owtte (1) Shows that separating the xylem and phloem (and then putting back into contact) does not affect movement (1) If when separated they return back together Values would be the same at all points (1) If stay separated Expect values to be the same in xylem and phloem as in previous experiment (1)			2	2		2	
	(b)	i	No / little transport in xylem (1) transport in phloem in both directions (1)			2	2			
		ii	Analyse samples from (above and) below the lower leaf (1) If both positive then movement in both directions (1)			2	2			

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	7	7	0	14	1	0
2	3	1	4	8	0	2
3	5	9	0	14	5	3
4	5	7	2	14	2	3
5	2	6	0	8	0	0
6	3	2	8	13	0	2
7	3	4	2	9	0	0
TOTAL	28	36	16	80	8	12

