

GCE MARKING SCHEME

BIOLOGY - HUMAN BIOLOGY AS/Advanced

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCE BIOLOGY - HUMAN BIOLOGY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
BY1	1
BY2	10
HB2	17
BY4	28
HB4	37
BY5	47

GCE BIOLOGY BY1

MARK SCHEME - SUMMER 2014

Question		n	Marking details			g details	Marks Available
1	(a)	(i)	Cuboidal;				2
			Kidney tub	oule;			
			Accept kid	Accept kidney/ liver/named gland/ureter/ovary/glands			
		(ii)	Ciliated;N	OT cilia			2
			Trachea /	oviduct/fallop	ian tube	/ bronchi/bronchioles;	
	(b)		В	nucleus	contair	ns <u>DNA</u> which {codes for/	4
						ls} protein synthesis/	
					transci		
						synthesis/replication};	
			С	nuclear	{Trans	port/movement} of {mRNA/	
				pores	nucleo	tides/rRNA};	
					Accep	t ribosomes	
					NOT tr	ansport of mRNA in	
			D	Nucleolus;	Produc	ces {rRNA/ribosomes/tRNA};	
					NOT p	roduces RNA unqualified	
	(c)		Organelle	e A		Nucleus	1
				mbrane is fol	ded /	No folding of inner	
						membrane /	
			Has crist	ae		no cristae;	
			No riboso	mes attache	d	ribosomes attached;	
			must be co	omparative			
	(d)		Ribosome	s are not atta	ched to	{membranes/ ER} in	2
			prokaryote	es (some) are	in anim	al cells;	
			Ribosome	s are {larger/8	80S} in a	animal cells than prokaryotes /	
			70S;				
			must be c	omparative			
						Question 1 Total	[11]

(Question		Marking details	Marks Available
2	(a)		(An organ) is an {aggregation/collection} of several tissues; To carry out a {specific/particular} {function/task/job} (for the whole organism);	2
	(b)	(i)	Carbohydrates; Accept polysaccharides	1
		(ii)	Any two from Alternating molecules rotated through 180° form <u>straight</u> chains; {Cross links/hydrogen bonds/ H bonds} form between chains; forming <u>microfibrils</u> ;	Max 2
		(iii)	Proteins/amino acids/nucleic acids/ nucleotides/ {organic/nitrogenous} bases; NOT DNA/RNA	1

Question 2 Total

[6]

G	uestion	Marking details	Marks Available
3	(a)	Iron / Fe2 ⁺ ;	1
	(b)	{Four polypeptide chains / two alpha and two beta subunits}; in tertiary form are {combined/joined};	2
	(c)	Add {biuret (reagent) / copper sulphate and sodium hydroxide}; Reject boil/heat Colour changes from blue to {purple/lilac/violet};	2
	(d)	Biosensor;	1
		Question 3 Total	[6]

Question		n	Marking	g details	Marks Available		
4	(a)		A – Phosphate;		3		
			Accept phosphoric acid				
			B – Deoxyribose;				
			NOT pentose				
			C – {Organic/nitrogenous} base	•			
			NOT named base (can be neut	ral)			
	(b)		Uracil in RNA thymine in DNA;	NOT U in RNA and T in DNA	Max 2		
			RNA is (usually) single stranded, DNA is double stranded;				
			DNA is <u>longer</u> molecule than R				
			Sugar is ribose in RNA, deoxyri	bose in DNA;			
	(c)	(i)	Interphase;		1		
		(ii)	Anaphase;		1		
		(iii)	Meiosis	Mitosis	3		
			4 cells	2 cells produced;			
			Haploid/ half the number of	Diploid/ same number of			
			chromosomes of the parent	chromosomes as the parent			
			cell	cell			
			Genetically different;	genetically identical;			
				Accept clone			

Question 4 Total [10]

Q	uestion	Marking details	Marks Available
5	(a)	(Method) Diffusion; (Reason) Rate is proportional to concentration; NOT graph is proportional	2
	(b)	(Increasing ion concentration) increases chance that (a molecule will) {collide with/ pass through} {pump/carrier/protein};	1
	(c)	Active transport;	1
	(d)	$\begin{split} \Psi_S &= \Psi - \Psi_P \text{ / i.e100 -200;} \\ -300 \text{ kPa;} & \text{(Must have units)} \\ \text{Correct answer + unit = 2 marks} \\ \text{Correct answer + no unit = 1 mark} \end{split}$	2

Question 5 Total

[6]

Question		1	Marking details		
6	(a)		7/8 nm (must have correct units);	1	
			Accept range of 6-10		
	(b)		Vitamin A -	4	
			{Dissolves in /can pass directly through} {phospholipid layer/		
			hydrophobic regions}; By diffusion;		
			Glucose –		
			Cannot pass through phospholipid layer therefore uses {protein		
			channels/ carriers/ transport proteins/ hydrophilic		
			channels/intrinsic proteins};		
			By facilitated diffusion; Accept active transport		
	(c)	(i)	Ethanol {dissolves/emulsifies} (phospho)lipids/ denatures protein; NOT cell membranes	2	
			Creates {gaps/holes/pores} in the membrane/ makes		
			membrane more porous;		
			NOT makes membrane more permeable		
		(ii)	Increased temperature increases kinetic energy of	2	
			{dye/membrane} molecules;		
			Increases (rate of) <u>diffusion</u> (of dye across membrane)/dye		
			diffuses across the membrane more rapidly;		
			Question 6 Total	[9]	

Question		n	Marking details		
7	7 (a)		Any two from	Max 2	
			Product not contaminated with enzyme;		
			Enzyme can be re-used/ small quantity of enzyme required;		
			Can {withstand/tolerate} a wider range of pH;		
			Can be used in a continuous process;		
	(b)		Increases (contact) time between enzymes and substrate/	2	
			more time for pectinase to digest {apple pulp/pectin};		
			More <u>successful</u> collisions/more enzyme substrate complexes		
			formed; NOT ESC		
	(c)	(i)	40°C to 60°C {decrease in/less} (volume of) juice extracted;	Max 4	
			NOT less juice extracted above 40 °C		
			Above 60 °C no juice extracted;		
			Between 40 °C and 60 °C enzymes are denaturing/ above 60 °C		
			they are denatured;		
			<u>Hydrogen</u> bonds break;		
			{Tertiary structure deformed / active site changes shape}		
			{Substrate can no longer fit/ fewer enzyme substrate		
			complexes formed};		
		(ii)	(Free enzymes) can move;	2	
			Increased chance of successful collision / more enzyme		
			substrate complexes formed;		
		(iii)	(Increased juice extracted with membrane bound enzymes)	2	
			because membrane bound enzymes are {more		
			accessible/OWTTE} to substrate;		
			(Enzymes immobilised inside bead) substrate has to		
			{diffuse/pass} into bead;		

Question 7 Total [12]

Question		Marking details		
8	(a)	Carbohydrates	Max 10	
	Α	Glucose for respiration;		
	В	Starch for storage of {glucose/energy}in plants;		
	С	Cellulose for structural support in plant cell walls/ chitin in {insect exoskeleton/ fungi};		
	D	Glycogen for storage of {glucose/energy} in animals;		
	E	{Glycogen/starch} insoluble so no osmotic effect;		
	F	Disaccharides or named + function (e.g. sucrose for transport in plants);		
		Lipids		
	G	Saturated fatty acids for storage in animals/ unsaturated fatty acids for storage in {seeds/plants};		
	Н	Thermal insulation/buoyancy;		
	1	Waxes for waterproofing in leaves;		
	J	Good source of energy, twice as many as carbohydrates or value 38 kJ per g;		
	К	Correct ref to protection of organ <u>from physical damage</u> (e.g. kidney);		
	L	Electrical insulation in neurons (ref to myelin);		
	М	Source of metabolic water from <u>respiration</u> of lipids;		
	N+	Used to make other molecules (CHO / glucose / lipids needed to make) Any two for one mark each from:		
	0	Chlorophyll with magnesium / phospholipids with phosphate/ {DNA/RNA/ATP} with nitrogen and phosphate / amino acids with nitrogen/ glycoprotein with protein;		

(Question		Marking details	Marks Available
8	(b)		Rough Endoplasmic Reticulum	Max 10
		Α	Flattened sacs/cisternae (or from diagram);	
		В	Continuous with nuclear membrane (or from diagram);	
		С	With attached ribosomes (must be clearly labelled on diagram);	
		D	Site of {protein synthesis/translation}/transport system;	
			Golgi	
		Ε	Golgi consists of a {series/system/group/stack} of (dynamic) flattened sacs (diagram must show at least 3);	
		F	Function in packaging proteins (for secretion);	
		G	Vesicles containing proteins from RER fuse with Golgi membrane and contents are shed into Golgi sacs/ coalescence of vesicles;	
		Н	(Contents are built into more complex molecules such as) enzymes/glycoproteins;	
		I	Other Golgi function, e.g. carbohydrate secretion/ transporting or storing lipids;	
		J	{Vesicles containing product/lysosomes} are budded off;	
		K	Ref. to exocytosis of contents; NOT in context of lysosomes	
			Lysosomes	
		L	Lysosomes contain digestive enzymes/lysozyme;	
		M	Function is to {break down worn out organelles/digest foreign material/ cause autolysis/ intracellular breakdown};	
		N	{Lysosomes/vesicles} fuse with membrane of digestive vacuoles;	
		0	Enclosed by phagocytosis; NOT in context of lysosomes	
			Award Max 8 if only 2 organelles described Points A,B,C and E can be accepted from clear diagram	

GCE BIOLOGY - BY2

MARK SCHEME - SUMMER 2014

	Question	I	Markin	g details	Marks Available
1	(a)		A = Capillary (network)/ capilla	ries;	3
	B = Epithelial cell/ epithelium/ epithelial layer;			epithelial layer;	
	C = Lacteal/ lymph vessel; NOT lymph node				
	(b)		Feature	Explanation	Max 4
			Microvilli/ folded epithelium;	Increase/ large surface	
				area/ greater	
				{absorption/diffusion} (of	
				digested products);	
				increase catalytic surface	
				area for digestion	
			(Dense/large) capillary	{Transport/absorb}	
			network/ {good/rich} blood	{glucose/amino acids] /	
			supply/ lots of capillaries;	maintain a	
				{diffusion/concentration}	
				gradient;	
			Presence of lacteal/ lymph	Absorb {lipids/fats/ fatty	
			vessel;	acids};	
			Thin epithelium/ epithelium	Short diffusion pathway;	
			one cell thick;		
	(c)	(i)	Mucus;		1
		(ii)	{Lubricates/ reduces friction} (f	or passage of food);	2
			Prevents {auto digestion of /dig	estion of/ autolysis of/ the effect	
			of acid/ enzymes on} the gut w	all;	
	(d)		Peristalsis;		3
			Correct action of circular and lo	ongitudinal muscles/ wave of	
			muscle contraction;		
			{Forces/pushes/ propels} food	along/mixes food (for more	
			efficient digestion/absorption);	NOT move	
	(e)		Deamination/ amino group rem	oved;	Max 2
			(amino groups) to urea;		
			remainder to {carbohydrate/ gly	/cogen};	
				Question 1 Total	[15]

Que	Question		Marking details	Marks Available
2	(a)	(i)	Loss of water <u>vapour</u> /evaporation of water; From leaf/stomata/lenticels;	2
		(ii)	Cooling effect/{supply/movement} of {mineral (ions)/water} /maintains transpiration {pull/stream} /required for photosynthesis /allows water to reach aerial parts;	1
	(b)	(i)	Prevent entry of air into xylem/ prevent formation of air bubble in xylem; Which would break {transpiration stream/ cohesive forces}/ block movement of water;	2
		(ii)	Diameter of capillary tube; Distance travelled by bubble; Time taken;	Max 2
	(c)	(i)	Xerophytes;	1
		(ii)	{High humidity/ humid atmosphere} in <u>air chamber</u> ; Because {water <u>vapour</u> /humid air} not removed by wind/ water <u>vapour</u> trapped; This produces a {less steep / reduces} {water potential/ diffusion/concentration} gradient; Between inside of leaf and air chamber/ inside and outside of stoma;	Max 3
		(iii)	{Smaller/less/ rolled} leaves/spines + reduced <u>surface area</u> (exposed to environment); {Reduced number/closure of stomata} + <u>less openings</u> for water to be lost through; {Hairs on leaves/rolled leaves} + {increases humidity/ reduces {water potential/ diffusion/ concentration} gradient/ traps water <u>vapour</u> }; <u>Thick</u> cuticle + reducing <u>evaporation</u> from surface of leaf;	Max 2
			Question 2 Total	[IS]

Question		on	Marking details	Marks Available
3	(a)	(i)	Adaptive radiation;	1
		(ii)	Mutation (in common ancestor); (Leads to) variation/ change of beak (shape); Becomes specialised/ adapted {to occupy a particular {niche/environment}/eat particular food}; Have a selective advantage/ are better {suited/ adapted} to a particular environment/ better chances of survival/OWTTE; (More) reproduce and pass on {genes/ alleles};	Max 4
	(b)	(i)	Humans closely related to gorillas; More amino acids <u>in common</u> / gorilla has 572 <u>in common</u> with Humans while horse has 557/ gorilla has 2 <u>different</u> from human while horse has 17 <u>different</u> ; Share <u>more recent</u> common ancestor;	3
		(ii)	Chromatography/electrophoresis;	1
		(iii)	Reduces mistakes made in classification due to convergent evolution;	1

Question 3 Total [10]

Question		l	Marking details	Marks Available
4	(a)		Increases surface area;	2
			<u>Diffusion</u> takes place (over whole area);	
	(b)	(i)	Mouth opens/floor of buccal cavity lowered;	Max 4
			Volume of {buccal cavity/inside the mouth} increases/pressure	
			lowered inside {buccal cavity/mouth};	
			Water {pulled in from outside/ enters due to pressure difference};	
			Mouth closes and {buccal cavity then contracts/ floor of buccal cavity raises};	
			Water forced {across/through} gills (into gill cavity);	
			Pressure in gill cavity increases;	
			Forces open the operculum / gill slits;	
		(ii)	Blood flows across (gills/ filaments/ lamellae/ gill plates) in	Max 3
			opposite direction to water;	
			Blood always meets water containing a higher oxygen	
			concentration/{diffusion/ concentration} gradient maintained/	
			equilibrium is never reached;	
			Across entire {gill/ gas exchange surface};	
			High <u>er</u> saturation of blood with oxygen achieved;	
	(c)	(i)	Diffusion pathway would be too long/ ensures a short diffusion	Max 2
			pathway;	
			Speed of diffusion too slow; To supply sufficient oxygen;	
			To supply sufficient oxygen,	
		(ii)	Less fluid/ fluid moves into muscle fibres/ fluid level decreases;	2
			More area for gaseous exchange/ shorter diffusion pathway;	
			Overtion 4 Tatal	[40]
			Question 4 Total	[13]

	Question	Markin	g details	Marks Available
5	(a)	(Phloem) parenchyma;		2
		(Phloem) fibres;		
		Feature	Explanation	Max 4
	(b)	Presence of sieve	Permits bidirectional flow/	
		{plates/pores};	permits flow (from cell to	
			cell/ through the plant};	
		{Few/no} organelles/	No obstruction to flow of	
		{thin/peripheral} cytoplasm;	solutes;	
		Plasmodesmata;	Allows transport of	
			{molecules/ ATP/ sucrose}	
			from companion cell (to	
			sieve tube element);	
		Maximum of two features with	matched explanation	
		Explanation mark only given if	feature correct	
	(c)	Mass flow is {a passive proces	ss/ not an active process);	3
		From high to low {concentration	on/pressure}/ down a	
		concentration gradient;		
		{Mitochondria/energy/ATP} no	t required (in a passive	
		process);		

- 6 (a) A (some) CO₂ {dissolves directly/ in solution} in the plasma;
 - B (some)CO₂ {diffuses into/absorbed by} {red blood cells /erythrocytes};
 - C (some) CO₂ combines with haemoglobin/ to form carbamino {haemoglobin/ compounds};
 - D (most) CO₂ combines with water to give carbonic acid;
 - E (catalysed) by carbonic anhydrase;
 - F carbonic acid dissociates into hydrogen carbonate and hydrogen ions;
 - G hydrogen carbonate ions pass out (into plasma);
 - H (chloride shift) allows movement of Cl⁻ into red blood cells:
 - I to maintain {electrical/ electrochemical} neutrality;
 - J <u>increased</u> {conc/partial pressure} of CO₂ (dissolved in blood);
 - K lowers pH of blood/blood becomes more acidic;
 - L oxyhaemoglobin {accepts H⁺/acts as a buffer};
 - M reduces affinity of haemoglobin for oxygen;
 - N <u>more</u> oxygen is released (from oxyhaemoglobin)/ <u>more</u> oxyhaemoglobin dissociates;
 - O oxygen dissociation curve moves to the right/Bohr {shift/effect}; Accept credit from graph/ diagram

Question	Marking details	Marks available
(b) A	Both are tubular/contain a lumen/ OWTTE;	
E	Both have movement by mass flow/OWTTE;	
C	Both movement along pressure gradients;	
С	Both movement in one direction only;	
E	Artery transports blood, xylem water;	
F	Movement of liquid pulsatile in arteries, smooth in xylem;	
G	Arteries living, xylem dead;	
F	Pressure generated by heart in arteries, no pump for xylem;	
	Xylem vessels contain lignin;	
	Xylem has support function;	
k	{Adhesive forces/ hydrophilic lining} in xylem;	
l	Arteries have {muscle/elastic tissue}; can be shown on diagram	
N	Arteries distend/recoil;	
Ν	Smooth endothelium of artery/ endothelium reduces friction;	
C	Artery <u>walls</u> composed of layers;	10

Question 6 Total [10]

GCE HUMAN BIOLOGY - HB2

Mark Scheme - Summer 2014

Question		1	Marking details	
1.	(a)		Capillary;	1
	(b)		Lymph/ lymphatic fluid;	1
	(c)	(i)	Protein / (serum) <u>albumin;</u>	1
		(ii)	Kwashiorkor / marasmus / protein-energy malnutrition; (PEM)	1
			Question 1 Total	[4]

Question			Marking deta	Marks Available	
2.	(a)	•	sm that lives in another (ho	ost) organism and {obtains host / causes damage to	1
	(b)				4
			ascariasis	schistosomiasis	
		where	(Small) intestine;	Blood vessels	
			NOT large	(supplying the intestine	
				/ bladder);	
		entry	{Touching the mouth	Intermediate host	
			with hands / by	releases infective larval	
			ingesting food or water}	forms	
			+ contaminated with	+ penetrate the skin;	
			eggs (from the soil);		
	(c)	Ascaris:	oducts of digestion/nutrien	ts (from the small	2
		intestine);	-	(10111000000000000000000000000000000000	
		•	erson suffers from iron def	iciency / malnutrition;	
		Schistos		•	max 2
		{Eats/dam	nages/reduces} number of i	red blood cells;	
		Eggs dam	nage wall of {gut / bladder};		
		Causes bl	leeding (into {gut / bladder})/ blood lost in {faeces /	
		urine};			
				0 4 0 7 4 1	

Question 2 Total [9]

Question			Marking details	Marks Available
3.	(a)	(i)	Phylogenetic (tree); Accept cladogram	1
		(ii)	SIMILARITY: Both show <i>H. heidelbergensis / H. ergaster</i> as being {common ancestor/evolved from} of <i>H. sapiens</i> and <i>H.neanderthalensis</i> ;	1
			DIFFERENCE: Model A shows <i>H. habilis</i> as the ancestor of all other hominids shown; Model A shows <i>H. ergaster</i> as the common ancestor of <i>H. heidelbergensis</i> and <i>H. erectus;</i> Model B shows an unknown common ancestor for all hominids shown;	Max 1
			Accept reverse arguments Reject references to timescale	
		(iii)	Fossils not found as yet / insufficient (fossil) evidence (to support theory);	1
	(b)		<u>Comparison</u> of DNA {sequences/bases/composition}; greater the similarity the closer the relationship(ORA)/ human DNA may contain genes from other hominid species;	2
			Question 3 Total	[6]

Question			Marking details		Marks Available	
4.	(a)		Teeth + reference to	{chewing / grinding}/ reference to role of	2	
			tongue;			
			Contraction of {stoma	ach/gut} wall}/ peristalsis;		
			Accept Bile + emulsif	ication of fats		
	(b)		Both for one mark		1	
	. ,	(i)	A amylase			
			C maltase			
			Both for one mark		1	
			B maltose			
			D glucose			
		(ii)	Mouth / buccal cavity	+ Duodenum / small intestine	1	
			(both needed for one	e mark)		
	(c)	(i)	E endopeptidas	e;	2	
			F exopeptidase	;		
		(ii)	pepsinogen:	hydrochloric acid / HCl;	2	
				Accept pepsin		
			trypsinogen:	enterokinase;		
		(iii)	Less mucus produce destroyed;	d (because cells are killed)/ mucus lining	Max 3	
			More {HCl/acid} production of NH ₃);	uced (to compensate for neutralising		
			-, .	n {attack / damage/erode} lining of		
			stomach (wall);	(
				tolysis / self-digestion;		
			, <u></u>			

Question 4 Total [12]

Question		Marking details				Marks Available
5.	(a)	FUNCT	TON	STRUCTURE		3
		Flattens		H/ diaphragm		
		Become cons	stricted	C/ bronchioles		
		Contain a sur	rfactant	E/ alveoli		
					I	
	(b)	(Thin walls)	Reduce d	iffusion distance/sh	ort diffusion	1
			path (for o	gas exchange);		
		(capillaries)	In close c	ontact to reduce dif	fusion	max 2
			distance/s	speed up gas excha	ange;	
			Circulation	n {creates/establish	n/maintains}	
			{diffusion/	concentration} grad	dient;	
			Transport	s gases to and fron	n site of gas	
			exchange	ı;		
			Large sur	face area {for gas e	exchange	
			(with bloo	d)/ so oxygen can l	oe absorbed/	
			to ensure	blood is saturated	with oxygen};	

3

(c) (i) Max 2 if no values used

Answers must be comparative

	•					
Breath	Emphysema cannot breathe out as deeply as					
out	healthy/ smaller expiratory reserve					
	(Reject EV)					
	healthy = 1.5dm ³					
	emphysema = 1.0dm ³					
	/residual volume bigger than healthy					
	emphysema 3.2					
	healthy 2.0;					
Breath	Emphysema reaches a higher max volume/					
in	healthy max = 6 dm ³					
	emphysema max = 6.3dm ³					
	/smaller inspiratory reserve (Reject IV)					
	healthy IV = 1.5 dm ³					
	emphysema IV = 1.3 dm ³					
	/vital capacity in healthy is higher than in					
	emphysema					
	Healthy = 4.0 dm ³					
	Emphysema 3.1 dm ³ ;					
normal	Faster breathing rate /					
	healthy = 12 per min					
	emphysema = 16 per min					
	/less time to {inhale / breath in}					
	/longer to {exhale/breathe out}					
	healthy 3s in 2s out					
	emphysema 1s in 3s out					
	/shallower breathing					
	healthy Tidal Volume = 1.0dm ³					
	emphysema Tidal Volume = 0.4dm³					
	(Reject TV)					

- (ii) For three marks the candidate needs:
 - to describe one way that the lungs are damaged;
 - to explain how this affects the lungs;
 - to explain the difference in breathing pattern;

DAMAGE	AFFECT ON LUNGS	DIFFERENCE
Alveoli	Reduced surface area/	Faster breathing rate (to
breakdown	Larger air spaces	compensate for less efficient gas
/ coalesce		exchange)
/ merge	Fewer obstructions to	{Less time to inhale / breath in}
	air flow	(easier for air to get into air sacs)
		Higher max volume of breath
		(easier for air to get into air sacs)
Walls of	Increase in diffusion	Faster breathing rate
alveoli	distance	(to compensate for less efficient gas
thickened		exchange)
Lung	Exhalation / breathing	{Longer to exhale / breath out}
tissue less	out more difficult	(have to force air out of lungs)
elastic/		{Smaller expiratory reserve / can't
less elastic		breathe out as deeply}
recoil		(can't force as much air out of lungs)
		{Smaller inspiratory reserve / can't
		breathe in as deeply}/ residual
		volume is greater in emphysema
		(lungs can't stretch as much)

[Max 3]

Question 5 Total [12]

Question		king details	Marks Available
a)	Α	Platelets / thrombocytes	2
	В	Lymphocyte (ignore ref. T or B)	
		Reject T or B cell	
	С	Red blood cell / erythrocyte	
		NOT rbc	
	D	Phagocyte / macrophage / granulocytes	
		(2 ✓= 1 mark)	
		a) A B C	A Platelets / thrombocytes B Lymphocyte (ignore ref. T or B) Reject T or B cell C Red blood cell / erythrocyte NOT rbc D Phagocyte / macrophage / granulocytes

(b) (i) Transport of oxygen (and carbon dioxide);

1

(ii) Candidates need to describe an adaptation + a <u>related</u> function for two marks.

max 2

ADAPTATION	ROLE IN CARRYING OUT FUNCTION
Thin;	Reduces diffusion distance;
Biconcave;	Increases surface area;
Non-nucleated;	More space for haemoglobin;
Small;	Increases surface area: volume ratio;
Contains	Transporting oxygen;
haemoglobin;	

- (c) (i) Protein / toxin / cell surface /(marker) molecule; max 2

 Recognised as foreign to the body/ for cell recognition;

 Eliciting immune response/ stimulates antibody production;
 - (ii) Recipient's blood / plasma (could) contain antibodies against max 2
 {A , B, Rh /D / red blood cell / blood group} antigens;
 Antigen-antibody reaction / antibodies bind to the antigens on red blood cells;
 (Haem) agglutination / cross-link red blood cells;
 NOT clotting

Question 6 Total [9]

Question			Marking details	Marks Available
7.	(a)	(i)	12.5 (days)	1
		(ii)	Memory cells already present; Less antigen needed to stimulate immune response; More plasma cells produced in a shorter period of time;	max 2
	(b)	(i)	(Approximately same shape as primary immune response:) Start at 0 at 40 days; Some indication of a latent period + slow increase; Reaches a peak similar to primary response after 13 – 17 days (day 53 – 57) then decreases;	3
		(ii)	No prior exposure to the <u>antigen;</u> Produces a primary immune response / no memory cells; Has to go through a latent period; Needs time to recognise foreign antigen / for clonal expansion / clonal selection / development of humoral response;	max 2

[8]

Question 7 Total

Question		on	Marking details		
8.	(a)	Α	{Heart/Cardiac} muscle is myogenic/ spontaneously active / external stimulus not needed to initiate contraction;		
		В	Sino Atrial node controls contraction rate (or rhythm) (of muscle cells) / initiate contraction /acts as pacemaker;		
		С	Wave of contraction/excitation spreads over atria and atria contract {simultaneously/ together};		
		D	Layer of {connective tissue/non conductive tissue} prevents wave of excitation spreading to the ventricles;		
		Е	AtrioVentricular node transmits impulses (to ventricles);		
		F	Through Bundle of His / Purkinje fibres to {apex/base} (of ventricles);		
		G	Purkinje fibres (in the ventricle) walls carry the {wave of excitation/ impulse} upwards (through the ventricle muscle);		
		Н	Ventricles contract (together) from base up;		
		1	Contraction of the ventricles is delayed after the atria contract	(6 max)	
		J	(An electrocardiogram / electrocardiograph / ECG) records/ electrical {changes/activity} in the heart;		
		K	The P wave corresponds to atrial contraction/systole;		
		L	The Q, R and S waves precede ventricular contraction/ systole;		
		M	T wave represents relaxation of the ventricles/ ventricular diastole;		
		N	Compare ECG from a patient against normal PQRST trace / identify arrhythmias/ diagnose irregularities;		
		0	ONE named example: ventricular fibrillation / heart block / atrial fibrillation / bradycardia / tachycardia;	(4 max)	
			Question 8 a Total	[10]	

Question		n	Marking details	Marks Available
8.	(b)	Α	Bacteriostatic;	
		В	Prevent bacterial growth;	
		С	Bactericidal;	
		D	Kill bacteria;	
		Е	Effective against {only bacterial metabolic processes / not those of the host};	
		F	Narrow spectrum;	
		G	Affect {(metabolic) processes/ named process} found in <u>some</u> bacteria only;	
		Н	Broad spectrum;	(max 6)
		I	Affect {metabolic processes/ named process} common to most bacteria;	
		J	(Penicillin) affects(the formation of) <u>cross linkages</u> in the {murein / peptidoglycan} cell wall/ inhibits enzyme responsible for cross linkages;	
		K	During growth / cell wall formation / cell division;	
		L	Osmotic changes cause lysis/ or description of;	
		M	Gram negative bacteria have a protective outer layer;	
		N	Containing lipoprotein + lipopolysaccharide;	
		0	Prevents penicillin {coming into contact with the (proteoglycan) cell wall/ inhibiting the enzyme};	(max 4)
			Question 8 (b) Total	[10]

GCE BIOLOGY - BY4

MARK SCHEME - SUMMER 2014

Question		Marking details		
1	(a)	{Ammonium/ammonia} ions/ NH ₄ ⁺ ;	1	
	(b)	Azotobacter;	1	
	(c)	Root nodules;	1	
	(d)	 (Rhizobium synthesises) {nitrogen containing compounds/or eg} {which pass to plant/ which plant can use}/ allows legumes to grow in low fertility soil; NOT fixes nitrogen (Plant synthesises) {carbohydrates/organic acids} which pass to the Rhizobium/ {Plant/ leghaemoglobin} provides anaerobic conditions for the bacteria; NOT Plant provides protection for the bacteria/ nutrients passing to bacteria 	2	
	(e)	{Small/additional} rings of DNA (which occur in addition to the chromosomal DNA);	1	
		Question 1 total	[6]	

Question		on		Marking details	Marks Available	
2	(a)	(i)	Obligate	{microorganisms/bacteria} that	1	
			aerobe	{grow/divide/ metabolise} in the		
				presence of <u>oxygen</u> ;		
			Obligate	{microorganisms/bacteria} that will	1	
		(ii)	anaerobe	only {grow/divide/metabolise} in the		
				absence of <u>oxygen</u> ;		
			Facultative	{microorganism/bacteria} that can	1	
		(iii)	anaerobe	{grow/divide/ metabolise} with or		
				without <u>oxygen</u> ;		
					1	
	(b)		Gram +ve PU	RPLE Gram -ve RED/PINK	3	
			(both colours	correct for one mark);		
			Gram positive	retain the {(crystal) violet/ purple} stain		
	because of their {thick/peptidoglycan/murein} cell wall;					
			Gram negative	e do not retain the stain because of their		
			{thinner cell w	all/ less peptidoglycan/ less		
			murein/lipopol	lysaccharide layer};		
			Gram positive	retain crystal violet because they have a		
			thicker cell wa	all than the gram negative = 2 marks		
	(c)		Both for one	mark	1	
	(-)		Cocci	sphere/ spherical	·	
			Bacilli	Rod; Accept cylinder		

Question 2 Total [7]

	Question		Marking details	Marks Available	
3	(a)	(i)	Both X and Y correct for one mark X White matter Y Grey matter; Explanation: Grey matter contains the (darkly staining) cell bodies/nuclei of neurones whilst the white matter is mainly {axons/myelin};	1 for both	
		(ii)	L Dorsal Root ganglion; Z Central canal;	2	
	(b)	(i)	Schwann cell; Myelin/ phospholipid; NOT lipid	2	
		(ii)	Insulates the axon; Allows saltatory conduction/ impulse jumps from node to node; So speeding up the transmission of the action potential/ increase speed of conduction;	Max 2	
		(iii)	Impulses cannot jump node to node/ saltatory conduction is stopped/ local circuits {too short/insufficient}/ {Few/no} voltage gated Na+ channels (between Nodes of Ranvier); So action potential cannot be generated/ speed of conduction is reduced/ action potential does not reach destination;	2	
		(iv)	Remyelinate the axon/use of stem cells/make the membrane add Na ⁺ channels in bare areas/prevent further demyelination/ immune {suppressants/ inhibitory} drugs; Accept physiotherapy	1	
	(c)	(i)	Nerve net drawn	1	
		(ii)	Respond to a limited number of stimuli; Cannot detect source of stimulus/ impulses pass in all directions; Number of effectors is small; No CNS; Accept no brain Action potential can be carried in more than one direction along a neurone;	Max 2	
			Only one type of cell/ unmyelinated/ facilitation - qualified/ slower response;		
			Question 3 Total	[14]	

Question		n	Marking details	Marks Available
4	(a)	(i)	A Collecting duct;	3
			B Proximal Convoluted Tubule;	
			C Distal Convoluted Tubule;	
		(ii)	Label to Glomerulus capillary/centre of Bowman's capsule;	2
			Label to PCT;	
	(b)		Both for one mark	1
			X Renal artery	
			Y Renal vein;	
	(c)		Water leaves descending limb {osmotically/by osmosis}/ Na ⁺ is	Max 4
			retained in descending limb;	
			At apex Na ⁺ is very concentrated/ the ascending limb receives	
			a filtrate rich in Na⁺/OWTTE;	
			Na ⁺ {actively transported/pumped out} of the ascending limb;	
			Lowering the water potential in the medulla;	
			Ascending limb (does not allow the escape of water/	
			impermeable to water};	
			Counter current system = neutral	
	(d)		{High osmotic pressure /low water potential/ low solute	Max 4
			potential/ high solute concentration} of blood detected by	
			{osmoreceptors/hypothalamus};	
			(Secretion of) ADH by pituitary;	
			Reject: anterior pituitary	
			Causes collecting duct (walls) to {become more permeable to	
			water/insertion of aquaporins};	
			Water moves into the medulla by osmosis;	
			(Quickly) removed by the {Vasa Recta/capillaries/ blood};	
			<u>Low volumes</u> of <u>concentrated</u> urine produced;	

(Question		Marking details				
5	(a)	(i)		hosphorylation otophosphorylation		1	
		(ii)	(High energy) electro	ns/electron {carriers/	acceptors};	1	
	((iii)	NADP → NADPH(₂)/	reduced NADP;		1	
	((iv)	Oxygen/ O ₂ / ½ O ₂ ;			1	
		(v)	Carbon dioxide/ CO ₂ ;	;		1	
	((vi)	Glucose;			1	
	(b)		Area	Letter	Name of region	4	
			Alea	Letter	Name of region		
			Where the light dependent stage occurs	C;	Grana/Thylakoid;		
			Where the light independent stage occurs	D;	Stroma;		
			One mark for each b	ох			
	(c)		Synthesis of amino a	cids/proteins using {	(a nitrogen source/	Max 3	
			named nitrogen sou	ırce};			
			Synthesis of phospho	olipids with phospha	te;		

Question 5 Total [13]

Synthesis of {nucleotides/named nucleotide} with a **nitrogen**

Synthesis of chlorophyll with magnesium;

source and phosphate source;

Question		n	Marking details		Marks Available	
6	(a) (i)		All three correct fo	r one mark	1	
			Citrate	6		
			α-ketoglutarate	5		
			Succinate	4		
		(ii)	4C oxaloacetate plus	s 2 C acetyl;	2	
			1C lost/ CO ₂ lost {be	fore α-ketoglutarate/ from isocitrate}/		
			isocitrate is decarbo	xylated		
			and 1C lost/ CO ₂ los	st {from α-ketoglutarate/ before succinate} /		
			α-ketoglutarate deca	arboxylated;		
	(b)		Reduced NAD and r	educed FAD pass electrons to the Electron	Max 4	
			Transport Chain;			
			The <u>high energy</u> elec	ctrons/ electrons provide energy;		
			(Used to power) prot	ton pumps;		
			On the inner mitocho	ondrial membrane/cristae;		
			Which pump H ⁺ into	the inter-membrane space;		
			Reduced NAD power	rs all 3 pumps/ Reduced FAD passes to		
			2 nd pump/ OWTTE;			
			ATP synthesis = neu	utral		
	(c)		Dehydrogenase;		2	
			decarboxylase;			
	(d)		(Skeletal) muscle;		2	
			High numbers of mit	ochondria and easy to access/ OWTTE;		

Question	on Marking details	
(e)	Low with pyruvate	2
	{The pathway leading to Acetyl Co A/link reaction} is not	
	working/ {Enzymes/dehydrogenase/decarboxylase} are not	
	active/ There is no reduced NAD for the Electron Transport	
	Chain (so no O ₂ needed);	
	High with α-ketoglutarate	
	The pathway between α -ketoglutarate and the rest of the cycle	
	is working correctly/ There is enough reduced {NAD/FAD} to	
	drive the ETC (which needs O ₂);	
(f)	Enzymes catalysing the conversion of the molecule to the next	1
	in the cycle are not functional/ The {molecule/named example}	
	cannot be converted to the {next intermediate/ named	
	example} / build up of reduced NAD and FAD;	
(g)	The {Krebs cycle/ link reaction/ Electron Transport Chain} is	Max 2
	not working (as well);	
	Pyruvate levels {build up/ increase/ higher};	
	(Excess) {pyruvate/NADH ₂ } is converted to Lactate;	
	Question 6 Total	[16]

7 (a) Any 10 from:

A 3 for 1 mark

The main photosynthetic pigments found in plants are chlorophyll **a**, chlorophyll **b**, carotene and xanthophyll;

- B The function of these pigments is to **absorb** {light <u>energy/</u> photons;
- C Correct reference to pigments in photosystems/ antenna complexes;
- D Correct reference to pigment positions within the thylakoid membrane/grana;
- E Of a chloroplast;
- F Chlorophyll a molecules in the reaction centre;
- G {Reaction centre/ chlorophyll} emitting high energy electrons;
- H Ref to range of pigments absorbing more {light energy/ photons}/ over a greater range of wavelengths
- I Used to synthesise ATP {to drive/for} the {Calvin cycle/light independent stage};
- J Some mention of {spotting plant pigments/ crushing leaf} onto a TLC/chromatography paper;
- K Addition of solvent (extraction of pigment or for separation);
- L Pigments are carried different distances;
- M According to their {solubility (in solvent)/ size};
- N Correct reference to {relative solubility/ different spot positions} {i.e. carotene more soluble than chlorophyll a and b/ carotene carried further};
- O Identify using Rf values/comparison with known separation of pigments;

Question 7a Total [10]

7 (b)

Correct term and **explanation** of events in each of A, B, C and D:

- A lag phase enzyme synthesis/ rehydration/ inability to find mates/ time for sexual maturity NOT getting used to environment;
- B log/ exponential phase rate of reproduction exceeds death rate/ {no environmental pressure/ OWTTE};
- C stationary phase environmental pressure/ limiting factors/ rate of reproduction = death rate;
- D death phase death rate exceeds rate of reproduction/ lack of resources/ build up of toxins;
- E Graph drawn the correct shape with BOTH axes labeled with Population size/ eq and time (if use units must be appropriate);
- F Correctly **explained** carrying capacity (NOT just a labeled line on the graph) as the max numbers of a pop that can be sustained by the environment;
- G Correct explanation of inter-specific competition (2 different species competing for a given resource) and e.g.;
- H Correct explanation of intra-specific competition (same species competing for a given resource) and e.g.;
- I Explanation of how density dependent factor affects population growth (increase numbers in population increases competition for resources);
- J One suitable e.g. of dependent factor affecting pop growth;
- K Explanation of how density independent factors affects population (Independent of population size);
- L One suitable e.g. of density independent factor affecting popⁿ;
- M Immigration and emigration definition;
- N Description of predator prey relationship; Accept labelled diagram
- O Births and immigration = deaths and emigration {at stationary phase / in a stable population};

Question 7b Total [10]

GCE BIOLOGY HB4

MARK SCHEME - SUMMER 2014

Questio	n Marking details	Marks Available	
1 (a)	Condition does not affect sensory neurons/ only motor neurons affected;	1	
(b)	Parkinson's disease caused by lack of dopamine (which is a neurotransmitter);	1	
(c)	Some strokes caused by burst blood vessels;	1	
(d)	At 37°C risk of culturing pathogenic human bacteria;	1	
(e)	Prevents contamination which therefore avoid competition / toxic waste products / pathogenic bacteria / contamination of product.	1	
(f)	Keep at optimum pH for enzymes;	1	
(g)	Act as neurotransmitters in brain / modify synaptic transmission in brain.	1	
(h)	Lipopolysaccharides/ lipoprotein deposited in walls as cells age;	1	
	Question 1 total	[8]	

Question		on	Marking details	Marks Available	
2	(a)	(i)	Two from the following for one mark Organic, protein / amino acids/ DNA/ RNA/ ATP/ nucleotides/ chlorophyll/ inorganic, ammonium ions/ nitrites/ nitrates; Reject ammonia.	1	
		(ii)	C = decomposition / decay / ammonification / putrefaction; D = denitrification;	2	
		(iii)	Drainage/ ploughing; encouraging aerobic conditions;	2	
		(iv)	I Rhizobium;	1	
			II convert atmospheric nitrogen / soil nitrogen; Amino acids / protein; Decomposition returns ammonium ions to soil;	3	
	(b)		13.6kg/ha;	1	
	(c)		Any two from Urine; faeces; A dung. leguminous plants/ clover; wheat absorbs more/ needs more; increased drainage in ploughed fields;	2	
			Question 2 total	[12]	

Question		on	Marking details	Marks Available
3	(a)	(i)	 A = Myelin sheath; B = Axon / axoplasm; C = Sarcolemma/ plasma membrane/ motor end plate; Accept post synaptic membrane; 	4
			D = Myofibril;	
		(ii)	Ca ²⁺ gates open; Ca ²⁺ / calcium ions diffuse into synaptic knob/ neurone; Reject into membrane Synaptic vesicles move towards presynaptic membrane; Fuse with membrane; Transmitter substance / acetylcholine released into synaptic cleft; Diffuse across gap {join with/ bind to} receptors on postsynaptic membrane; Sodium gates open sodium ions diffuse into cell;	Max 5
	(b)	(i)	Action potential generated; Synaptic vesicles cannot bind to presynaptic membrane; No exocytosis / release acetyl choline into cleft + qualification of effect; Receptors post synaptic membrane blocked + qualification of effect; Sodium ion channels blocked on post synaptic membrane + qualification of effect;	Max 2
		(ii)	Enzymes destroy it / antibody attack; New synapses produced; Protein replaced; Any sensible suggestion.	Max 1
			Question 3 Total	[12]

Question		on	Markin	g details	Marks Available
4	(a)	(i)	Sequence of amino acids;		1
		(ii)	Two or more linked tertiary po	olypeptides +	
			held together by hydrophobic	interaction / ionic bonds/	1
			hydrogen bonds;		
			, ,		
	(b)	(i)	Actin;		1
		(ii)	Correct on diagram;		1
		(iii)	ADP, iP;		1
		(iv)		owtto:	3
		(17)	Allows cross bridges to form/		3
			Clubbed head of myosin mov	es back and forth/ owtte;	
			Ratchet mechanism;		
	(c)		Slow Twitch	Fast Twitch	4
			Good blood supply	Poor blood supply	
			High numbers mitochondria	Low numbers mitochondria	
			More myoglobin	Less myoglobin	
			Low density myofibrils	High density myofibrils	
			Small diameter myofibrils / fibres	Large diameter myofibrils / fibres	
			Low glycogen levels	High glycogen levels	
			aerobic / no lactic acid / low lactate tolerance	Anaerobic / lactic acid / high tolerance to lactate	
			Slow contraction / weak force / fatigue slowly / endurance.	Quick contraction / strong force / fatigue quickly / speed.	

Question 4 Total [12]

Question		on	Marking details	Marks Available	
5	(a)	(i)	Aerobic: mitochondria;	1	
			Anaerobic: sarcoplasm/ cytoplasm;		
		(ii)	When oxygen use exceeds supply;	1	
	(b)	(i)	Glycolysis;	4	
			Accept description.		
			Pyruvic acid / pyruvate;		
			Hydrogen from NADH ₂ ;		
			Reform NAD;		
		(ii)	Lowers pH;	Max 1	
			Denatures enzymes/ cramp;		
			No enzymes in muscle to convert it back into pyruvate;		
	(c)		Extra oxygen required to convert lactic acid back into pyruvic	1	
			acid/ to combine with hydrogen from NADH ₂ ;		
	(d)		I Obligate anaerobe;	1	
			Il Facultative anaerobe;	1	
			Question 5 Total	[10]	

Question	Marking details	Marks Available	
(c) (i)	(circular) muscles contract, lumen gets smaller / ORA;	2	
	Less difference between afferent and efferent diameter		
	therefore pressure drops;		
(ii)	Increased glomerular filtration, dehydration / increased vol.		
	Urine / damage kidney;	1	
	Question 6 Total	[16]	

(Question		Marking details	Marks Available
7	(a)	A.	Inner mitochondrial membrane;	MAX 10
		В.	Hydrogen from glycolysis;	
		C.	Link reaction or Krebs;	
		D.	Reduced NAD / FAD;	
		E.	Hydrogen from reduced NAD used to reduce a protein in membrane;	
		F.	Hydrogen split into protons and electrons;	
		G.	Electrons passed along ETC;	
		H.	Energy released used to pump protons;	
		l.	Into inter membrane space;	
		J.	Creates proton gradient / pH gradient/ proton motive force / electrochemical gradient;	
		K.	Protons diffuse down gradient back into matrix of mitochondrion;	
		L.	Through / on outside of stalked particles;	
		M.	Cause ATP synthase / synthetase;	

O. Protons combine with electrons and oxygen producing

N. ADP + iP to ATP

water;

Question (b)		Marking details	Marks Available
(=)	A.	Photons / light energy;	
	В.	Absorbed by photosystems;	
	C.	Electron from chlorophyll excited / pushed to higher energy level;	
	D.	Electron acceptor passed to ETC;	
	E.	Cyclic and non cyclic photophoshorylation;	
	F.	ATP produced;	
	G.	Photolysis of water qual;	
	Н.	Electrons, protons reduce NADP	
	I.	RUBP fixes CO ₂ ;	
	J.	2 mols GP;	
	K.	ATP, NADPH ₂ used to produce TP;	
	L.	TP to Glucose;	
	M.	Calvin cycle produces lipids and amino acids;	
	N.	Oxygen produced;	
	Ο.	Ref. thylakoid membranes and stroma qual.	
	Que	estion 8 Total	[10]

Marks

© WJEC CBAC Ltd.

7

GCE BIOLOGY - BY5

MARK SCHEME - SUMMER 2014

Question		on	Marking details	Marks Available	
1	(a)		A – Corona radiata / follicle (cells)/ cumulus cells/ granulosa cells; B- Zona pellucida;	2	
	(b)	(i)	Acrosome;	1	
		(ii)	{Releases/ contains} {enzymes/proteases/carbohydrase}; To {digest/ break down/ penetrate/ soften} {corona radiata/ zona pellucida};	2	
	(c)	(i)	{Splitting/dividing} of { <u>zygote/early embryo</u> } cells to form new cells;	1	
		(ii)	Hollow ball of cells/ ball of {undifferentiated/ partly differentiated} cells;	1	
		(iii)	The {burying/ embedding/ implanting} of the {blastocyst/ embryo} into the {uterine lining/endometrium};	1	
			Question 1 Total	[8]	

Question		n	Marking details	Marks Available	
2	(a)	(i)	DNA molecule unwinds; Unzips/ breaks hydrogen bonds/ strands separate; (free) {nucleotides } {join/align} with {complementary bases/ A to T/ C to G};	3	
		(ii)	{To join the nucleotides together/ catalyses the addition of nucleotides} to form a {new strand/ backbone/ phosphodiester bonds};	1	
	(b)		Each new DNA molecule has one {original/ template} strand; And one new strand which has been {made/ synthesised/ replicated};	2	

Question 2 Total

[6]

Question		n	Marking details	
3	(a)		40;	1
	(b)	(i)	Correct diagram; two chromosome pairs vertically orientated one of each pair on each side of the equator one pair of chromosomes bigger than the other	1
		(ii)	Correct labelling of chromatid, <u>centromere</u> , <u>centriole</u> , spindle fibres 2 marks for 4 correct labels 1 mark for 2 or 3 correct labels	2
		(iii)	Correct diagrams; Two chromosomes in each cell (one large and one small) Centromeres on dotted line	1
		(iv)	{Random/ independent} assortment of {chromosomes/ chromatids}/ description of {random/ independent assortment}; crossing over/ chiasmata; produces haploid cells;	3

Question 3 Total

[8]

Question		on	Marking details	Marks Available
4	(a)	(i)	NnGg for both; NG Ng nG ng for both; correct completion of punnet square;	5
			correct ratio 9:3:3:1;	
			correct phenotypes matched to ratio;	
		(ii)	Correct expected number column 72 : 24 : 24 : 8;	1
	(b)	(i)	0.667/ 0.67/ 3;	1
		(ii)	7.82 circled;	1
		(iii)	Accept because χ^2 value is to left of {critical value/ 7.82}/ Accept because χ^2 value has probability higher than {0.05/5%}/ Accept because χ^2 value falls between {0.9/90%} and {0.8/80%} probability/ Accept because the probability lies between 80-90% that it is due to chance alone; If not circled any answer for (ii) must refer to 7.82 in (iii) ECF from chi squared table	1
	(c)		{Common phenotypes/red grey and scarlet ebony} are due to linkage/ description of linkage; {Rare phenotypes/ red ebony and scarlet grey} due to {crossing over/ recombinants};	2
			Question 4 Total	[11]

Question			Marking details		
5 (a)			Restriction {endonuclease/ enzymes} used to cut (out the		
			desired gene);		
			The <u>same</u> {endonuclease/ enzyme} is used to open the plasmids;		
			Producing {complementary/ corresponding} 'sticky ends';		
			Ligase is used to {join/ splice/ attach/ adhere/ anneal} gene into plasmid;		
	(b)		Placed in sterile, (aerated) {medium/agar}; NOT soil	Max 3	
			(Allow) cells to form {callus/ mass of {undifferentiated/		
			totipotent cells}};		
			Callus is subdivided;		
			Apply hormones to callus to differentiate into plantlets/		
			Plantlets {transplanted/put} into sterile soil;		
	(c)	(i)	'Roundup' will not kill crop but it will kill {other plants / weeds};	3	
			Reducing competition in the field;		
			Allowing increased yield;		
		(ii)	There will be increased use of herbicide;	Max 2	
			a reduction in biodiversity/ may lead to {herbicide resistant		
			weeds/ superweeds} bioaccumulation in food chain;		
			OR		
			Dispersal of pollen from crops engineered for herbicide		
			resistance to {wild relatives/ weeds};		
			may lead to {herbicide resistant weeds/ superweeds};		
			OR		
			<u>Dispersal of pollen</u> from crops engineered for herbicide		
			resistance to other crops;		
			May contaminate organic crops;		
			OR		
			(GM crop) produces a new protein;		
			Unknown effects of <u>eating</u> new protein; Question 5 Total	[12]	
			adoction o rotal	r·-1	

Question			Marking details	Marks Available
6	(a)	(i)	CGC is replaced by TGC/ C is replaced by T; Amino acid cys has replaced arg;	2
		(ii)	Change in {protein/ tertiary} structure/ different protein is made; MC1R will not be stimulated (by the hormone); {Less/no} eumelanin will be produced;	Max 2
	(b)	(i)	Mice with light fur found in an environment providing {light backgrounds/sandy beaches} AND mice with dark fur in {forest /dark backgrounds}/ Dark fur is found in the darker background/ light fur is found in the lighter background; For camouflage/ OWTTE;	2
		(ii)	Small populations (of mice);	1
		(iii)	Mice with light fur {are less easily seen/caught by predators/ correct reference to camouflage/ have a selective advantage}; Light fur mice (survive to) reproduce and pass {allele C/ advantageous allele/ light fur allele} to next generation; Increasing the frequency of the allele; 95% of population (have allele C);	4
		(iv)	{Genetic/behavioural/geographic/allopatric/reproductive/ sympatric/ seasonal/ temporal} isolation;	1
			Question 6 Total	[12]

Question			Marking details			Marks Available
7	(a)		Primary: enviror rock;	2		
	(b)	(i)	Acid/acidic; NO	1		
		(ii)	feature	Betula	Ulex	3
			рН	(from 3.56 to 4.24,	(from 3.56 to 3.55	
				difference of 0.68)	difference of 0.01)	
				Increases	Not much/	
				pH/makes more	no change/ no	
				alkali/ makes less	effect/ slight	
				acidic/	decrease;	
			Phosphorus	(from 3.88 to 4.7	(from 3.88 to 4.16	
				difference of 0.82)	difference of 0.28)	
				Increases a lot	Small increase;	
			Nitrate	(from 0.68 to 0.84	(from 0.68 to 2.37	
				difference of 0.14)	difference of 1.69)	
				Increases	Very large	
					increase;	
			1 mark for valid	COMPARISON of each	ch feature	
	(c) (i) Ulex europaeus;					1
		species} {change the	2			
		competition for				
	named resource/ existing species are at a disadvantage/ so					
	(d) (i) Climax community;					1
		(ii)	Increases;			1
		(iii)	{C. vulgaris /E. plus B and plus	2		
Names must be included to access any marking points						
					Question 7 Total	[13]

- **8** (a) A* Sepal/calyx –tough leaf-like- to protect more delicate parts {in bud/ when immature}/ can be coloured to attract insects/ green for photosynthesis;
 - B* Petals/corolla large/brightly coloured/scented to attract insects :
 - C {Nectaries/nectar /sugar} to attract insects;
 - D* Filament thin/stalk-like/short/hooked to hold anthers where they will come in contact with insect/ contains vascular tissue to provide anther with nutrients;
 - E Anther— to {produce/ contain} {haploid gametes/male gametes/pollen /microspore};
 - F* Anther is hollow/ has a line of weakness- description of splitting and rolling to put pollen on outside/ correct reference to dehiscence/ getting pollen onto insect;
 - G* Pollen (grain) sculptured exine/ has hooks to attach to insects body;
 - H* Stigma {is sticky to catch/trap pollen (grains)}/{ secretes chemicals/sugar} to stimulate pollen tube growth};
 - I Style to hold stigma where it will come in contact with insects/ pollen tube {gains nutrients from the style/ digests its path though the style}:
 - J Correct reference to relative positions of anthers and stigmas to {prevent self /encourage cross} pollination;
 - K* Ovary {walls to {protect/contain} developing ovule/embryo sac}/ { -secretes chemicals pollen tube growth};
 - L* Ovule- integuments to protect developing embryo;
 - M (Ovule) tiny hole/micropyle to allow entry of pollen tube;
 - N Good drawing correctly labelled with at least 4 of above;
 - Appropriate means of ensuring cross pollination, e.g. dimorphism (single sex plants)/ protogyny (ovules mature first)/ protandry (pollen matures first)/genetic incompatibility/ chemical inhibition on the stigma;

To award * there must be a name, a description and a function

Question 8 Total [10]

- **8** (b) A Sun is source of energy/ energy enters as light energy;
 - B Photosynthesis converts light energy to chemical energy (in organic molecules);
 - C {Not all light/ only some light} striking plants is used for photosynthesis;
 - D Some {is reflected/ passes between {cells/chloroplasts}/ wrong wavelength/ is transmitted/ passes through};
 - E Correct definition of GPP/ total (bio)mass of (organic) produce/ rate at which products are formed/ kJm⁻²yr⁻¹;
 - F Correct definition for NPP/ Mass available to primary consumers:

Accept correct equation to credit E and F (GPP- Respiration=NPP)

- G {Biomass/ plant matter/ chemical energy} is transferred from producer to {herbivores/primary consumers} when it is eaten;
- H Not all plant is {eaten e.g. roots/ digested e.g. cellulose};
- I (Respiration) energy is lost as heat energy/ used for {movement/ metabolism/ active transport};
- J {<u>Biomass/ chemical energy</u>} is passed to {carnivores/secondary consumers};
- K Energy in {faeces /urine/ dead bodies} is <u>passed to decomposers</u>; NOT excretion
- Carnivores are more efficient + protein is more easily digestible/ herbivores are less efficient + cellulose is less easily digestible;

Keeping animals in heated sheds with little room to move about

- M Less heat energy will be lost {if the difference between body temperature and shed temperature is small/ maintaining body temperature};
- N Less energy will be lost in movement if the animals are prevented from moving;
- O More of the energy is used for making meat / eggs / milk / increasing {biomass/ size}yield;

Question 8 Total [10]

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: exams@wjec.co.uk website: www.wjec.co.uk