GCE MARKING SCHEME

BIOLOGY - HUMAN BIOLOGY AS/Advanced

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCE BIOLOGY - HUMAN BIOLOGY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
BY1 1
BY2 10
HB2 17
BY4 28
HB4 37
BY5 47

GCE BIOLOGY BY1

MARK SCHEME - SUMMER 2014

Question
Marking details
Marks
Available

1 (a)
(a) (i) Cuboidal;

Kidney tubule;
Accept kidney/ liver/named gland/ureter/ovary/glands
(ii) Ciliated;NOT cilia

Trachea / oviduct/fallopian tube/ bronchi/bronchioles;
(b)

B	nucleus	contains DNA which \{codes for/ controls\} protein synthesis/ transcription/ DNA $\{$ synthesis/replication\};
C	nuclear pores	\{Transport/movement\} of \{mRNA/ nucleotides/rRNA\}; Accept ribosomes NOT transport of mRNA in
D	Nucleolus;	Produces \{rRNA/ribosomes/tRNA\}; NOT produces RNA unqualified

(c)

$\left.$| Organelle A |
| :--- |
| Inner membrane is folded / |
| Has cristae | | No folding of inner |
| :--- |
| membrane / |
| no cristae; | \right\rvert\, | No ribosomes attached | ribosomes attached; |
| :--- | :--- |
| must be comparative | |

must be comparative
(d) Ribosomes are not attached to \{membranes/ ER\} in prokaryotes (some) are in animal cells;
Ribosomes are \{larger/80S\} in animal cells than prokaryotes /
70S;
must be comparative

Question

Marking details
(a) (An organ) is an \{aggregation/collection\} of several tissues; 2To carry out a \{specific/particular\} \{function/task/job\} (for thewhole organism);
(b) (i) Carbohydrates; 1Accept polysaccharides
(ii) Any two from Max 2Alternating molecules rotated through 180° form straightchains;\{Cross links/hydrogen bonds/ H bonds\} form between chains;forming microfibrils;
(iii) Proteins/amino acids/nucleic acids/ nucleotides/ 1
\{organic/nitrogenous\} bases;
NOT DNA/RNA
Question Marking details
3 (a) Iron / Fe^{+}; 1
(b) \{Four polypeptide chains / two alpha and two beta subunits\}; 2 in tertiary form are \{combined/joined\};
(c) Add \{biuret (reagent) / copper sulphate and sodium hydroxide\}; 2
Reject boil/heatColour changes from blue to \{purple/lilac/violet\};
(d) Biosensor; 1

Question

Marking details
4
(a)
A - Phosphate;
Accept phosphoric acid
B - Deoxyribose;
NOT pentose
C - \{Organic/nitrogenous\} base;

NOT named base (can be neutral)
(b) Uracil in RNA thymine in DNA; NOT U in RNA and T in DNA

RNA is (usually) single stranded, DNA is double stranded;
DNA is longer molecule than RNA ;
Sugar is ribose in RNA, deoxyribose in DNA;
(c) (i) Interphase;
(ii) Anaphase;
(iii)

Meiosis	Mitosis
$\underline{4}$ cells	$\underline{2}$ cells produced;
Haploid/ half the number of chromosomes of the parent cell	Diploid/ same number of chromosomes as the parent cell
Genetically different;	genetically identical;
Accept clone	

Question 4 Total

Question	Marking details	Mark Availa
(a)	(Method) Diffusion; (Reason) Rate is proportional to concentration; NOT graph is proportional	2
(b)	(Increasing ion concentration) increases chance that (a molecule will) \{collide with/ pass through\} \{pump/carrier/protein\};	1
(c)	Active transport;	1
(d)	$\Psi_{\mathrm{S}}=\Psi-\Psi_{\mathrm{P}} / \text { i.e. }-100-200 ;$ -300 kPa ; (Must have units) Correct answer + unit = 2 marks Correct answer + no unit = 1 mark	2

(a) (Method) Difusion; 2(Reason) Rate is proportional to concentration;
NOT graph is proportional
molecule will) \{collide with/ pass through\} \{pump/carrier/protein\};
(c) Active transport; 1
$\Psi_{S}=\Psi-\Psi_{P}$ /i.e. $-100-200$ 2Correct answer + unit = 2 marks
Correct answer + no unit = 1 mark

Marking details

6 (a) $\quad 7 / 8 \mathrm{~nm}$ (must have correct units);
Accept range of 6-10
(b) Vitamin A - 4
\{Dissolves in /can pass directly through\} \{phospholipid layer/ hydrophobic regions\};

By diffusion;

Glucose -
Cannot pass through phospholipid layer therefore uses \{protein channels/ carriers/ transport proteins/ hydrophilic channels/intrinsic proteins\};

By facilitated diffusion; Accept active transport

(c) (i) Ethanol \{dissolves/emulsifies\} (phospho)lipids/ denatures protein; NOT cell membranes
 Creates $\{\mathrm{gaps} /$ holes/pores $\}$ in the membrane/ makes membrane more porous;
 NOT makes membrane more permeable
 (ii) Increased temperature increases kinetic energy of
 \{dye/membrane\} molecules;
 Increases (rate of) diffusion (of dye across membrane)/dye
 diffuses across the membrane more rapidly;

Any two from
Product not contaminated with enzyme;
Enzyme can be re-used/ small quantity of enzyme required;
Can \{withstand/tolerate\} a wider range of pH ;
Can be used in a continuous process;
(b) Increases (contact) time between enzymes and substrate/
more time for pectinase to digest \{apple pulp/pectin\};
More successful collisions/more enzyme substrate complexes formed; NOT ESC
(c) (i) $40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ \{decrease in/less\} (volume of) juice extracted;

NOT less juice extracted above $40^{\circ} \mathrm{C}$
Above $60^{\circ} \mathrm{C}$ no juice extracted;
Between $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ enzymes are denaturing/ above $60^{\circ} \mathrm{C}$
they are denatured;
Hydrogen bonds break;
\{Tertiary structure deformed / active site changes shape\}
\{Substrate can no longer fit/ fewer enzyme substrate complexes formed\};
(ii) (Free enzymes) can move;

Increased chance of successful collision / more enzyme substrate complexes formed;
(iii) (Increased juice extracted with membrane bound enzymes)
because membrane bound enzymes are \{more accessible/OWTTE\} to substrate;
(Enzymes immobilised inside bead) substrate has to \{diffuse/pass\} into bead;

Marking details
Marks
Available
8
(a) Carbohydrates

Max 10
A Glucose for respiration;
B Starch for storage of \{glucose/energy\}in plants;
C Cellulose for structural support in plant cell walls/ chitin in \{insect exoskeleton/ fungi\};

D Glycogen for storage of \{glucose/energy\} in animals;
E \{Glycogen/starch\} insoluble so no osmotic effect;
F Disaccharides or named + function (e.g. sucrose for transport in plants);

Lipids

G Saturated fatty acids for storage in animals/ unsaturated fatty acids for storage in \{seeds/plants\};

H Thermal insulation/buoyancy;
I Waxes for waterproofing in leaves;
J Good source of energy, twice as many as carbohydrates or value 38 kJ per g ;

K Correct ref to protection of organ from physical damage (e.g. kidney);

L Electrical insulation in neurons (ref to myelin);
M Source of metabolic water from respiration of lipids;

Used to make other molecules
(CHO / glucose / lipids needed to make)
N_{+}Any two for one mark each from:
O Chlorophyll with magnesium / phospholipids with phosphate/ \{DNA/RNA/ATP\} with nitrogen and phosphate / amino acids with nitrogen/ glycoprotein with protein;

	Marks	
Question	Marking details	Available

A Flattened sacs/cisternae (or from diagram);
B Continuous with nuclear membrane (or from diagram);
C With attached ribosomes (must be clearly labelled on diagram);
D Site of \{protein synthesis/translation\}/transport system;

Golgi

E Golgi consists of a \{series/system/group/stack\} of (dynamic) flattened sacs (diagram must show at least 3);

F Function in packaging proteins (for secretion);
G Vesicles containing proteins from RER fuse with Golgi membrane and contents are shed into Golgi sacs/ coalescence of vesicles;

H (Contents are built into more complex molecules such as) enzymes/glycoproteins;

I Other Golgi function, e.g. carbohydrate secretion/ transporting or storing lipids;

J \{Vesicles containing product/lysosomes\} are budded off;
K Ref. to exocytosis of contents; NOT in context of lysosomes

Lysosomes

L Lysosomes contain digestive enzymes/lysozyme;
M Function is to \{break down worn out organelles/digest foreign material/ cause autolysis/ intracellular breakdown\};

N \{Lysosomes/vesicles\} fuse with membrane of digestive vacuoles;

O Enclosed by phagocytosis; NOT in context of lysosomes

Award Max 8 if only 2 organelles described
Points A, B, C and E can be accepted from clear diagram

GCE BIOLOGY - BY2

MARK SCHEME - SUMMER 2014

Marks
Question
Marking details
B = Epithelial cell/ epithelium/ epithelial layer;
C = Lacteal/ lymph vessel; NOT lymph node
(b)

Feature	Explanation
Microvilli/ folded epithelium;	Increase/ large surface area/ greater \{absorption/diffusion\} (of digested products); increase catalytic surface area for digestion
(Dense/large) capillary network/ \{good/rich\} blood supply/ lots of capillaries;	\{Transport/absorb\} \{glucose/amino acids] / maintain a \{diffusion/concentration\} gradient;
Presence of lacteal/ lymph vessel;	Absorb \{lipids/fats/ fatty acids\};
Thin epithelium/ epithelium one cell thick;	Short diffusion pathway;

(c) (i) Mucus;
(ii) \{Lubricates/ reduces friction\} (for passage of food);
Prevents \{auto digestion of /digestion of/ autolysis of/ the effect of acid/ enzymes on\} the gut wall;
(d) Peristalsis;
Correct action of circular and longitudinal muscles/ wave of muscle contraction;
\{Forces/pushes/ propels\} food along/mixes food (for more efficient digestion/absorption); NOT move
(e) Deamination/ amino group removed;
(amino groups) to urea;
remainder to \{carbohydrate/ glycogen\};
Question Marking details
2 (a) (i) Loss of water vapour/evaporation of water;
From leaf/stomata/lenticels;
(ii) Cooling effect/\{supply/movement\} of \{mineral (ions)/water\}
/maintains transpiration \{pull/stream\}
/required for photosynthesis
/allows water to reach aerial parts;
(b) (i) Prevent entry of air into xylem/ prevent formation of air bubble in xylem;
Which would break \{transpiration stream/ cohesive forces\}/
block movement of water;
$\begin{array}{ll}\text { (ii) } \begin{array}{l}\text { Diameter of capillary tube; } \\ \text { Distance travelled by bubble; }\end{array} & \text { Max } 2 \\ \text { Time taken; } & \end{array}$
(c) (i) Xerophytes;
(ii) \{High humidity/ humid atmosphere\} in air chamber;
Max 3
Because \{water vapour/humid air\} not removed by wind/ water vapour trapped;
This produces a \{less steep / reduces\} \{water potential/ diffusion/concentration\} gradient;
Between inside of leaf and air chamber/ inside and outside of stoma;
(iii) \{Smaller/less/ rolled\} leaves/spines + reduced surface area
(exposed to environment);
$\{$ Reduced number/closure of stomata\} + less openings for water to be lost through;
\{Hairs on leaves/rolled leaves\} + \{increases humidity/ reduces \{water potential/ diffusion/ concentration\} gradient/ traps water vapour\};
Thick cuticle + reducing evaporation from surface of leaf;

Question

Marking details
Marks
Available
3 (a) (i) Adaptive radiation;
(ii) Mutation (in common ancestor);
(Leads to) variation/ change of beak (shape);
Becomes specialised/ adapted \{to occupy a particular \{niche/environment\}/eat particular food\};

Have a selective advantage/ are better \{suited/ adapted\} to a particular environment/ better chances of survival/OWTTE; (More) reproduce and pass on \{genes/ alleles\};
(b) (i) Humans closely related to gorillas;

More amino acids in common/ gorilla has 572 in common with Humans while horse has 557/ gorilla has 2 different from human while horse has 17 different;

Share more recent common ancestor;
(ii) Chromatography/electrophoresis;
(iii) Reduces mistakes made in classification due to convergent 1 evolution;

Question

Marking details

| (a) Increases surface area; | 2 |
| :--- | :--- | :--- |
| | Diffusion takes place (over whole area); |

(b) (i) Mouth opens/floor of buccal cavity lowered;

Volume of \{buccal cavity/inside the mouth\} increases/pressure lowered inside \{buccal cavity/mouth\};

Water \{pulled in from outside/ enters due to pressure difference\};
Mouth closes and \{buccal cavity then contracts/ floor of buccal cavity raises\};
Water forced \{across/through\} gills (into gill cavity);
Pressure in gill cavity increases;
Forces open the operculum / gill slits;
(ii) Blood flows across (gills/ filaments/ lamellae/ gill plates) in opposite direction to water;
Blood always meets water containing a higher oxygen concentration/\{diffusion/ concentration\} gradient maintained/ equilibrium is never reached;
Across entire \{gill/ gas exchange surface\};
Higher saturation of blood with oxygen achieved;
(c) (i) Diffusion pathway would be too long/ ensures a short diffusion pathway;

Speed of diffusion too slow;
To supply sufficient oxygen;
(ii) Less fluid/ fluid moves into muscle fibres/ fluid level decreases;

More area for gaseous exchange/ shorter diffusion pathway;

Marking details
(Phloem) parenchyma;
(Phloem) fibres;
(b)

Feature	Explanation
Presence of sieve \{plates/pores\};	Permits bidirectional flow/ permits flow \{from cell to cell/ through the plant\};
\{Few/no\} organelles/ \{thin/peripheral\} cytoplasm;	No obstruction to flow of solutes;
Plasmodesmata;	Allows transport of \{molecules/ ATP/ sucrose $\}$ from companion cell (to sieve tube element);

Maximum of two features with matched explanation
Explanation mark only given if feature correct
(c) Mass flow is \{a passive process/ not an active process\};

From high to low \{concentration/pressure\}/ down a concentration gradient;
\{Mitochondria/energy/ATP\} not required (in a passive process);

Max 4

Question

6 (a) A (some) CO_{2} \{dissolves directly/ in solution\} in the plasma;
B (some) CO_{2} \{diffuses into/absorbed by\} \{red blood cells /erythrocytes\};

C (some) CO_{2} combines with haemoglobin/ to form carbamino \{haemoglobin/ compounds\};

D (most) CO_{2} combines with water to give carbonic acid;
E (catalysed) by carbonic anhydrase;
F carbonic acid dissociates into hydrogen carbonate and hydrogen ions;

G hydrogen carbonate ions pass out (into plasma);

H (chloride shift) allows movement of Cl^{-}into red blood cells;

I to maintain \{electrical/ electrochemical\} neutrality;
J increased \{conc/partial pressure\} of CO_{2} (dissolved in blood);

K lowers pH of blood/blood becomes more acidic;
L oxyhaemoglobin \{accepts H^{+}/acts as a buffer\};
M reduces affinity of haemoglobin for oxygen;
N more oxygen is released (from oxyhaemoglobin)/ more oxyhaemoglobin dissociates;

O oxygen dissociation curve moves to the right/Bohr \{shift/effect\}; Accept credit from graph/ diagram

Question
 Marking details

(b) A Both are tubular/contain a lumen/ OWTTE;

B Both have movement by mass flow/OWTTE;
C Both movement along pressure gradients;
D Both movement in one direction only;
E Artery transports blood, xylem water;
F Movement of liquid pulsatile in arteries, smooth in xylem;
G Arteries living, xylem dead;
H Pressure generated by heart in arteries, no pump for xylem;
I Xylem vessels contain lignin;
J Xylem has support function;
K \{Adhesive forces/ hydrophilic lining\} in xylem;
L Arteries have \{muscle/elastic tissue\}; can be shown on diagram

M Arteries distend/recoil;
N Smooth endothelium of artery/ endothelium reduces friction;

O Artery walls composed of layers;
Question Marking details Marks
Available

1. (a) Capillary; 1
(b) Lymph/ lymphatic fluid; 1
(c) (i) Protein / (serum) albumin; 1
(ii) Kwashiorkor / marasmus / protein-energy malnutrition; (PEM) 1
Question 1 Total [4]
Question
Marking details
2. (a) An organism that lives in another (host) organism and \{obtains nourishment (at the expense) of the host / causes damage to the host\};
(b)

	ascariasis	schistosomiasis
where	(Small) intestine; NOT large	Blood vessels (supplying the intestine / bladder);
entry	$\{$ Touching the mouth with hands $/$ by ingesting food or water $\}$ + contaminated with eggs (from the soil) ;	Intermediate host releases infective larval forms + penetrate the skin;

(c) Ascaris:

Absorb products of digestion/nutrients (from the small intestine);
Infected person suffers from iron deficiency / malnutrition;
Schistosoma:
\{Eats/damages/reduces\} number of red blood cells;
Eggs damage wall of \{gut / bladder\};
Causes bleeding (into \{gut / bladder\})/ blood lost in \{faeces / urine\};
Question Marking details
3. (a) (i) Phylogenetic (tree); 1
Accept cladogram
(ii) SIMILARITY: 1
Both show H. heidelbergensis / H. ergaster as being \{commonancestor/evolved from\} of H. sapiens and H.neanderthalensis;
DIFFERENCE:Max 1Model A shows H. habilis as the ancestor of all other hominidsshown;Model A shows H. ergaster as the common ancestor ofH. heidelbergensis and H. erectus;Model B shows an unknown common ancestor for all hominidsshown;
Accept reverse argumentsReject references to timescale
(iii) Fossils not found as yet / insufficient (fossil) evidence (to 1 support theory);
(b) Comparison of DNA \{sequences/bases/composition\}; 2
greater the similarity the closer the relationship(ORA)/ human DNA may contain genes from other hominid species;
Question 3 Total[6]
Question Marking details
Contraction of \{stomach/gut\} wall\}/ peristalsis;
Accept Bile + emulsification of fats
(b) Both for one mark 1
(i) A amylase
C maltase
Both for one mark 1
B maltose
D glucose
(ii) Mouth / buccal cavity + Duodenum / small intestine (both needed for one mark)
(c) (i) E endopeptidase;
F exopeptidase;
(ii) pepsinogen: hydrochloric acid / HCl; 2
trypsingen: enterokinase
(iii) Less mucus produced (because cells are killed)/ mucus lining destroyed;
More $\{\mathrm{HCl} /$ acid $\}$ produced (to compensate for neutralising action of NH_{3});
Acid in food / HCl can \{attack / damage/erode\} lining of stomach (wall);
Pepsin can cause autolysis / self-digestion;

Question

5. (a)

FUNCTION	STRUCTURE
Flattens	H/ diaphragm
Become constricted	C/ bronchioles
Contain a surfactant	E/ alveoli

(b) (Thin walls) Reduce diffusion distance/short diffusion path (for gas exchange);
(capillaries) In close contact to reduce diffusion $\max 2$ distance/speed up gas exchange;
Circulation \{creates/establish/maintains\}
\{diffusion/concentration\} gradient;
Transports gases to and from site of gas exchange;
Large surface area \{for gas exchange (with blood)/ so oxygen can be absorbed/ to ensure blood is saturated with oxygen\};
(c) (i) Max 2 if no values used

Answers must be comparative

Breath out	Emphysema cannot breathe out as deeply as healthy/ smaller expiratory reserve (Reject EV) healthy $=1.5 \mathrm{dm}^{3}$ emphysema $=1.0 \mathrm{dm}^{3}$ /residual volume bigger than healthy emphysema 3.2 healthy 2.0;
Breath in	Emphysema reaches a higher max volume/ healthy $\max =6 \mathrm{dm}^{3}$ emphysema $\max =6.3 \mathrm{dm}^{3}$ /smaller inspiratory reserve (Reject IV) healthy IV $=1.5 \mathrm{dm}^{3}$ emphysema IV = $1.3 \mathrm{dm}^{3}$ /vital capacity in healthy is higher than in emphysema Healthy $=4.0 \mathrm{dm}^{3}$ Emphysema $3.1 \mathrm{dm}^{3}$;
normal	```Faster breathing rate / healthy \(=12\) per min emphysema = 16 per min /less time to \{inhale / breath in\} /longer to \{exhale/breathe out\} healthy 3 s in 2 s out emphysema 1s in 3s out /shallower breathing healthy Tidal Volume \(=1.0 \mathrm{dm}^{3}\) emphysema Tidal Volume \(=0.4 \mathrm{dm}^{3}\) (Reject TV)```

(ii) For three marks the candidate needs:

- to describe one way that the lungs are damaged;
- to explain how this affects the lungs ;
- to explain the difference in breathing pattern;

DAMAGE	AFFECT ON LUNGS	DIFFERENCE		
Alveoli breakdown / coalesce / merge	Reduced surface area/			
Larger air spaces			\quad	Faster breathing rate (to
:---				
compensate for less efficient gas				
exchange)	,	Fewer obstructions to		
:---				
air flow				

Question Marking details

6. (a) A Platelets / thrombocytes

Marks
Available

B Lymphocyte (ignore ref. T or B)
Reject T or B cell
C Red blood cell / erythrocyte NOT rbc

D Phagocyte / macrophage / granulocytes (2 $\checkmark=1$ mark)
(b) (i) Transport of oxygen (and carbon dioxide);
(ii) Candidates need to describe an adaptation + a related function $\max 2$ for two marks.

ADAPTATION	ROLE IN CARRYING OUT FUNCTINN
Thin;	Reduces diffusion distance;
Biconcave;	Increases surface area;
Non-nucleated;	More space for haemoglobin;
Small;	Increases surface area: volume ratio;
Contains haemoglobin;	Transporting oxygen;

(c) (i) Protein / toxin / cell surface /(marker) molecule;
$\max 2$
Recognised as foreign to the body/ for cell recognition;
Eliciting immune response/ stimulates antibody production;
(ii) Recipient's blood / plasma (could) contain antibodies against
\{A , B, Rh /D / red blood cell / blood group\} antigens;
Antigen-antibody reaction / antibodies bind to the antigens on red blood cells;
(Haem) agglutination / cross-link red blood cells;
NOT clotting
Question Marking details
7. (a) (i) 12.5 (days) 1
(ii) Memory cells already present; $\max 2$
Less antigen needed to stimulate immune response;
More plasma cells produced in a shorter period of time;
(b) (i) (Approximately same shape as primary immune response:)
Start at 0 at 40 days;

Some indication of a latent period + slow increase;

Reaches a peak similar to primary response
after 13 - 17 days (day $53-57$) then decreases;
(ii) No prior exposure to the antigen;
$\max 2$
Produces a primary immune response / no memory cells;
Has to go through a latent period;
Needs time to recognise foreign antigen / for clonal expansion / clonal selection / development of humoral response;
Question 7 Total

Marking details

8. (a) A \{Heart/Cardiac\} muscle is myogenic/ spontaneously active / external stimulus not needed to initiate contraction;
B Sino Atrial node controls contraction rate (or rhythm) (of muscle cells) / initiate contraction /acts as pacemaker;

C Wave of contraction/excitation spreads over atria and atria contract \{simultaneously/ together\};

D Layer of \{connective tissue/non conductive tissue\} prevents wave of excitation spreading to the ventricles;

E AtrioVentricular node transmits impulses (to ventricles);
F Through Bundle of His / Purkinje fibres to \{apex/base\} (of ventricles);

G Purkinje fibres (in the ventricle) walls carry the \{wave of excitation/ impulse\} upwards (through the ventricle muscle);

H Ventricles contract (together) from base up;
I Contraction of the ventricles is delayed after the atria contract
J (An electrocardiogram / electrocardiograph / ECG) records/ electrical \{changes/activity\} in the heart;

K The P wave corresponds to atrial contraction/systole;
L The Q, R and S waves precede ventricular contraction/ systole;
M T wave represents relaxation of the ventricles/ ventricular diastole;

N Compare ECG from a patient against normal PQRST trace / identify arrhythmias/ diagnose irregularities;

O ONE named example: ventricular fibrillation / heart block / atrial fibrillation / bradycardia / tachycardia;

Marking details
8. (b) A Bacteriostatic;

B Prevent bacterial growth;
C Bactericidal;
D Kill bacteria;
E Effective against \{only bacterial metabolic processes / not those of the host\};

F Narrow spectrum;
G Affect $\{($ metabolic) processes/ named process\} found in some bacteria only;

H Broad spectrum;
I Affect \{metabolic processes/ named process\} common to most bacteria;
J (Penicillin) affects(the formation of) cross linkages in the \{murein / peptidoglycan\} cell wall/ inhibits enzyme responsible for cross linkages;

K During growth / cell wall formation / cell division;
L Osmotic changes cause lysis/ or description of;
M Gram negative bacteria have a protective outer layer;
N Containing lipoprotein + lipopolysaccharide;
O Prevents penicillin \{coming into contact with the (proteoglycan) cell wall/ inhibiting the enzyme\};

GCE BIOLOGY - BY4

MARK SCHEME - SUMMER 2014

MarksAvailable
1 (a) \quad Ammonium/ammonia\} ions/ $\mathrm{NH}_{4}{ }^{+}$; 1
(b) Azotobacter; 1
(c) Root nodules; 1
(d) 1. (Rhizobium synthesises) \{nitrogen containing 2compounds/or eg\} \{which pass to plant/ which plant canuse\}/ allows legumes to grow in low fertility soil;NOT fixes nitrogen2. (Plant synthesises) \{carbohydrates/organic acids\} whichpass to the Rhizobium/ \{Plant/ leghaemoglobin\}provides anaerobic conditions for the bacteria;NOT Plant provides protection for the bacteria/ nutrientspassing to bacteria
(e) $\{$ Small/additional $\}$ rings of DNA (which occur in addition to the chromosomal DNA);1

Question

Marking details
Marks
Available
(both colours correct for one mark);
Gram positive retain the \{(crystal) violet/ purple\} stain because of their \{thick/peptidoglycan/murein\} cell wall; Gram negative do not retain the stain because of their \{thinner cell wall/ less peptidoglycan/ less murein/lipopolysaccharide layer\};
Gram positive retain crystal violet because they have a thicker cell wall than the gram negative $=2$ marks
(c) Both for one mark

Cocci sphere/ spherical
Bacilli Rod; Accept cylinder

Question

(a) (i) Both X and Y correct for one mark X White matter 1 for both
Y Grey matter;
Explanation: Grey matter contains the (darkly staining) cell bodies/nuclei of neurones whilst the white matter is mainly \{axons/myelin\};
(ii) L Dorsal Root ganglion;
Z Central canal;
(b) (i) Schwann cell;
Myelin/ phospholipid; NOT lipid 2(iii) Impulses cannot jump node to node/ saltatory conduction isstopped/ local circuits \{too short/insufficient\}/ \{Few/no\} voltagegated $\mathrm{Na}+$ channels (between Nodes of Ranvier);So action potential cannot be generated/ speed of conduction isreduced/ action potential does not reach destination;
(iv) Remyelinate the axon/use of stem cells/make the membrane add Na^{+}channels in bare areas/prevent further demyelination/ immune \{suppressants/ inhibitory\} drugs; Accept physiotherapy
(c) (i) Nerve net drawn2 Max 2
(ii) Insulates the axon;
(ii) Insulates the axon;
Allows saltatory conduction/ impulse jumps from node to node; So speeding up the transmission of the action potential/ increase speed of conduction;
(ii) Respond to a limited number of stimuli;Max 2Cannot detect source of stimulus/ impulses pass in all directions;Number of effectors is small;No CNS; Accept no brainAction potential can be carried in more than one direction alonga neurone;Only one type of cell/ unmyelinated/facilitation - qualified/ slowerresponse;

Question

Marking details

4
(a)
(i) A
Collecting duct;
B Proximal Convoluted Tubule;
C Distal Convoluted Tubule;

3
(ii) Label to Glomerulus capillary/centre of Bowman's capsule;
Label to PCT;
(b) Both for one mark
X Renal artery
Y Renal vein;
(c)

Water leaves descending limb \{osmotically/by osmosis\}/ Na^{+}is retained in descending limb;

At apex Na^{+}is very concentrated/ the ascending limb receives a filtrate rich in $\mathrm{Na}^{+} /$OWTTE;
Na^{+}\{actively transported/pumped out\} of the ascending limb;
Lowering the water potential in the medulla;
Ascending limb \{does not allow the escape of water/ impermeable to water\};
Counter current system = neutral

(d)	\{High osmotic pressure /low water potential/ low solute
potential/ high solute concentration\} of blood detected by 4	
\{osmoreceptors/hypothalamus \};	
(Secretion of) ADH by pituitary;	
Reject: anterior pituitary	
Causes collecting duct (walls) to \{become more permeable to	
water/insertion of aquaporins\};	
Water moves into the medulla by osmosis;	
(Quickly) removed by the \{Vasa Recta/capillaries/ blood\};	
Low volumes of concentrated urine produced;	

Question

Marking details
(a) (i) $\mathbf{1}$ mark for both 1
Y Cyclic photophosphorylation
Z Non cyclic photophosphorylation
(ii) (High energy) electrons/electron \{carriers/acceptors\}; 1
(iii) NADP \rightarrow NADPH $(2) /$ reduced NADP; 1
(iv) Oxygen/ $\mathrm{O}_{2} / 1 / 2 \mathrm{O}_{2}$; 1
(v) Carbon dioxide/ CO_{2}; 1
(vi) Glucose; 1
(b) 4

Area	Letter	Name of region
Where the light dependent stage occurs	C;	Grana/Thylakoid;
Where the light independent stage occurs	D;	Stroma;

One mark for each box
(c) Synthesis of amino acids/proteins using \{a nitrogen source/
Synthesis of phospholipids with phosphate;
Synthesis of chlorophyll with magnesium;
Synthesis of \{nucleotides/named nucleotide\} with a nitrogen source and phosphate source;

Marking details
6 (a) (i) All three correct for one mark 1
Citrate 6
α-ketoglutarate 5
Succinate 4
(ii) 4C oxaloacetate plus 2 C acetyl; 2
1 C lost/ CO_{2} lost \{before a-ketoglutarate/ from isocitrate\}/ isocitrate is decarboxylated and 1 C lost/ CO_{2} lost \{from α-ketoglutarate/ before succinate\} / α-ketoglutarate decarboxylated;
(b) Reduced NAD and reduced FAD pass electrons to the Electron Max 4 Transport Chain;The high energy electrons/ electrons provide energy;(Used to power) proton pumps;
On the inner mitochondrial membrane/cristae;
Which pump H^{+}into the inter-membrane space;
Reduced NAD powers all 3 pumps/ Reduced FAD passes to
$2^{\text {nd }}$ pump/ OWTTE;
ATP synthesis $=$ neutral
(c) Dehydrogenase; 2
decarboxylase;
(d) (Skeletal) muscle; 2High numbers of mitochondria and easy to access/ OWTTE;

Marking details
(e) Low with pyruvate 2
\{The pathway leading to Acetyl Co A/link reaction\} is not working/ \{Enzymes/dehydrogenase/decarboxylase\} are not active/ There is no reduced NAD for the Electron Transport Chain (so no O_{2} needed);

High with α-ketoglutarate

The pathway between α-ketoglutarate and the rest of the cycle is working correctly/ There is enough reduced \{NAD/FAD\} to drive the ETC (which needs O_{2});
(f) Enzymes catalysing the conversion of the molecule to the next

The $\{$ Krebs cycle/ link reaction/ Electron Transport Chain\} is not working (as well);
Pyruvate levels \{build up/ increase/ higher\};
(Excess) $\left\{\right.$ pyruvate/ $\left.\mathrm{NADH}_{2}\right\}$ is converted to Lactate;

Marking details

7 (a) Any 10 from:
A 3 for 1 mark
The main photosynthetic pigments found in plants are chlorophyll a, chlorophyll b, carotene and xanthophyll;

B The function of these pigments is to absorb \{light energy/ photons;

C Correct reference to pigments in photosystems/ antenna complexes;

D Correct reference to pigment positions within the thylakoid membrane/grana;

E Of a chloroplast;
F Chlorophyll a molecules in the reaction centre;
G \{Reaction centre/ chlorophyll\} emitting high energy electrons;
H Ref to range of pigments absorbing more \{light energy/ photons\}/ over a greater range of wavelengths

I Used to synthesise ATP \{to drive/for\} the \{Calvin cycle/light independent stage\};

J Some mention of \{spotting plant pigments/ crushing leaf\} onto a TLC/chromatography paper;

K Addition of solvent (extraction of pigment or for separation);
L Pigments are carried different distances;
M According to their \{solubility (in solvent)/ size\};
N Correct reference to \{relative solubility/ different spot positions\} \{i.e. carotene more soluble than chlorophyll a and $\mathrm{b} /$ carotene carried further\};

O Identify using Rf values/comparison with known separation of pigments;

Question 7a Total

Question

Marking details

Correct term and explanation of events in each of A, B, C and D :

A lag phase - enzyme synthesis/ rehydration/ inability to find mates/ time for sexual maturity NOT getting used to environment;

B log/ exponential phase - rate of reproduction exceeds death rate/ \{no environmental pressure/ OWTTE\};

C stationary phase - environmental pressure/ limiting factors/ rate of reproduction = death rate;

D death phase - death rate exceeds rate of reproduction/ lack of resources/ build up of toxins;

E Graph drawn the correct shape with BOTH axes labeled with Population size/ eq and time (if use units must be appropriate);

F Correctly explained carrying capacity (NOT just a labeled line on the graph) as the max numbers of a pop that can be sustained by the environment;

G Correct explanation of inter-specific competition (2 different species competing for a given resource) and e.g.;

H Correct explanation of intra-specific competition (same species competing for a given resource) and e.g.;

I Explanation of how density dependent factor affects population growth (increase numbers in population increases competition for resources);

J One suitable e.g. of dependent factor affecting pop growth;
K Explanation of how density independent factors affects population (Independent of population size);

L One suitable e.g. of density independent factor affecting pop ${ }^{\text {n }}$;
M Immigration and emigration definition;
N Description of predator prey relationship; Accept labelled diagram

O Births and immigration = deaths and emigration \{at stationary phase / in a stable population\};

Question 7b Total

GCE BIOLOGY HB4

MARK SCHEME - SUMMER 2014

Question Marking details | Marks |
| :---: |
| Available |

1 (a) Condition does not affect sensory neurons/ only motor neurons affected;
(b) Parkinson's disease caused by lack of dopamine (which is a $\quad 1$
(c) Some strokes caused by burst blood vessels; 1
(d) At $37^{\circ} \mathrm{C}$ risk of culturing pathogenic human bacteria;
(e) Prevents contamination which therefore avoid competition /
toxic waste products / pathogenic bacteria / contamination of
product.
(f) Keep at optimum pH for enzymes; 1
(g) Act as neurotransmitters in brain / modify synaptic
(h) Lipopolysaccharides/ lipoprotein deposited in walls as cells
age;

Question 1 total [8]

Marking details
(a) (i) Two from the following for one mark Organic, protein / amino acids/ DNA/ RNA/ ATP/ nucleotides/ chlorophyll/ inorganic, ammonium ions/ nitrites/ nitrates; Reject ammonia.
(ii) $\mathrm{C}=$ decomposition / decay / ammonification / putrefaction; 2
$D=$ denitrification;
(iii) Drainage/ ploughing; 2
encouraging aerobic conditions;
(iv) I Rhizobium; 1
II convert atmospheric nitrogen / soil nitrogen ; 3
Amino acids / protein;
Decomposition returns ammonium ions to soil;
(b) $\quad 13.6 \mathrm{~kg} / \mathrm{ha}$; 1
(c) Any two from 2
Urine;
faeces; A dung. leguminous plants/ clover; wheat absorbs more/ needs more; increased drainage in ploughed fields;
Question 2 total[12]

Question

Marking details
(i) $\mathrm{A}=$ Myelin sheath;

B = Axon / axoplasm;
C = Sarcolemma/ plasma membrane/ motor end plate ; Accept post synaptic membrane;

D = Myofibril;
(ii) Ca^{2+} gates open;
Ca^{2+} / calcium ions diffuse into synaptic knob/ neurone;
Reject into membrane
Synaptic vesicles move towards presynaptic membrane;
Fuse with membrane;
Transmitter substance / acetylcholine released into synaptic cleft;

Diffuse across gap \{join with/ bind to\} receptors on
postsynaptic membrane;
Sodium gates open sodium ions diffuse into cell;
Action potential generated;
(b) (i) Synaptic vesicles cannot bind to presynaptic membrane;

No exocytosis / release acetyl choline into cleft + qualification of effect;

Receptors post synaptic membrane blocked + qualification of effect;

Sodium ion channels blocked on post synaptic membrane + qualification of effect;
(ii) Enzymes destroy it / antibody attack;

New synapses produced;
Protein replaced;
Any sensible suggestion.

Question 3 Total

Question

4 (a) (i) Sequence of amino acids;
(ii) Two or more linked tertiary polypeptides
held together by hydrophobic interaction / ionic bonds/
hydrogen bonds;
(b) (i) Actin;
(ii) Correct on diagram;
(iii) ADP, iP;
(iv) Allows cross bridges to form/ owte;

Clubbed head of myosin moves back and forth/ owtte;
Ratchet mechanism;
(c)

Slow Twitch	Fast Twitch
Good blood supply	Poor blood supply
High numbers mitochondria	Low numbers mitochondria
More myoglobin	Less myoglobin
Low density myofibrils	High density myofibrils
Small diameter myofibrils / fibres	Large diameter myofibrils / fibres
Low glycogen levels	High glycogen levels
aerobic / no lactic acid / low lactate tolerance	Anaerobic / lactic acid / high tolerance to lactate
Slow contraction / weak force / fatigue slowly / endurance.	Quick contraction / strong force / fatigue quickly / speed.

Marking details
(a) (i) Aerobic: mitochondria;
Anaerobic: sarcoplasm/ cytoplasm;1
(ii) When oxygen use exceeds supply; 1
(b) (i) Glycolysis; 4Accept description.Pyruvic acid / pyruvate;Hydrogen from NADH_{2};Reform NAD;
(ii) Lowers pH ; Max 1Denatures enzymes/ cramp;No enzymes in muscle to convert it back into pyruvate;
(c) Extra oxygen required to convert lactic acid back into pyruvic 1
acid/ to combine with hydrogen from NADH_{2};
(d) I Obligate anaerobe; 1
II Facultative anaerobe; 1
Question 5 Total [10]

Marking details
6 (a) (i) Water absorbed into blood, water potential rises;
Osmoreceptors hypothalamus;
(Posterior) pituitary, releases less ADH; R anterior pituitary
DCT/ collecting duct, less permeable;
Less water reabsorbed, large volumes dilute urine produced;
(ii) Same/ less salt but in a greater volume of urine/ Owtte;
(iii) Age;

Sex;
Max 2
Activity levels / exterior temperature;
Diet / salt intake;
Previous fluid intake;
mass/ weight;
external temperature;
normal kidney function;
(b) (i) Efferent arteriole narrower than afferent/ ORA/ ventricular systole;
(ii) Protein;
(iii) Down water potential gradient; 2

Osmosis
(iv) $10-6.7$;
3.3 kPa ;
QuestionMarking details
(c) (i) (circular) muscles contract, lumen gets smaller / ORA;

Less difference between afferent and efferent diameter therefore pressure drops;
(ii) Increased glomerular filtration, dehydration / increased vol.

Urine / damage kidney;
1

Question 6 Total
[16]

Marking details
(a) A. Inner mitochondrial membrane;

MAX 10
B. Hydrogen from glycolysis;
C. Link reaction or Krebs;
D. Reduced NAD / FAD;
E. Hydrogen from reduced NAD used to reduce a protein in membrane;
F. Hydrogen split into protons and electrons;
G. Electrons passed along ETC;
H. Energy released used to pump protons ;
I. Into inter membrane space;
J. Creates proton gradient / pH gradient/ proton motive force / electrochemical gradient;
K. Protons diffuse down gradient back into matrix of mitochondrion;
L. Through / on outside of stalked particles;
M. Cause ATP synthase / synthetase;
N. ADP + iP to ATP
O. Protons combine with electrons and oxygen producing water;

Question

Marking details

7
 (b)

A. Photons / light energy;
B. Absorbed by photosystems;
C. Electron from chlorophyll excited / pushed to higher energy level;
D. Electron acceptor passed to ETC;
E. Cyclic and non cyclic photophoshorylation;
F. ATP produced;
G. Photolysis of water qual;
H. Electrons, protons reduce NADP
I. RUBP fixes CO_{2};
J. 2 mols GP;
K. ATP, NADPH_{2} used to produce TP ;
L. TP to Glucose;
M. Calvin cycle produces lipids and amino acids;
N. Oxygen produced;
O. Ref. thylakoid membranes and stroma qual.

Question 8 Total

GCE BIOLOGY - BY5

MARK SCHEME - SUMMER 2014

Question

Marking details
Marks Available

1
(a) $\quad \mathrm{A}-$ Corona radiata / follicle (cells)/ cumulus cells/ granulosa cells;
B- Zona pellucida;
(b) (i) Acrosome; 1
(ii) \{Releases/ contains\} \{enzymes/proteases/carbohydrase\}; 2
To \{digest/ break down/ penetrate/ soften\} \{corona radiata/ zona pellucida\};
(c) (i) \{Splitting/dividing\} of \{zygote/early embryo\} cells to form new cells;
(ii) Hollow ball of cells/ ball of \{undifferentiated/ partly differentiated\} cells;
(iii) The \{burying/ embedding/ implanting\} of the \{blastocyst/ embryo\} into the \{uterine lining/endometrium\};
Question
2 (a) (i) DNA molecule unwinds; 3
Unzips/ breaks hydrogen bonds/ strands separate;
(free) \{nucleotides \} \{join/align\} with \{complementary bases/ A to T / C to G ;
(ii) \{To join the nucleotides together/ catalyses the addition of nucleotides\} to form a \{new strand/ backbone/ phosphodiester bonds\};
(b) Each new DNA molecule has one \{original/ template\} strand;
And one new strand which has been \{made/ synthesised/ replicated\};
Question Marking details
3 (a) 40;1
(b) (i) Correct diagram; 1
two chromosome pairs vertically orientated one of each pair on each side of the equator one pair of chromosomes bigger than the other
(ii) Correct labelling of 2
chromatid, centromere, centriole, spindle fibres
2 marks for 4 correct labels
1 mark for 2 or 3 correct labels
(iii) Correct diagrams; 1
Two chromosomes in each cell (one large and one small)
Centromeres on dotted line
(iv) \{Random/ independent\} assortment of \{chromosomes/ 3
chromatids $\}$ / description of \{random/ independent assortment\}; crossing over/ chiasmata;
produces haploid cells;

Question

Marking details
4
(a) (i) NnGg for both; 5NG Ng nG ng for both;correct completion of punnet square;correct ratio 9:3:3:1;correct phenotypes matched to ratio;
(ii) Correct expected number column $72: 24: 24: 8$; 1
(b) (i) $0.667 / 0.67 / 2 / 3$; 1
(ii) 7.82 circled; 1
(iii) Accept because x^{2} value is to left of \{critical value/ 7.82 \}/ 1
Accept because x^{2} value has probability higher than $\{0.05 / 5 \%\} /$Accept because x^{2} value falls between $\{0.9 / 90 \%\}$ and $\{0.8 /$80\%\} probability/Accept because the probability lies between 80-90\% that it isdue to chance alone;If not circled any answer for (ii) must refer to 7.82 in (iii)
ECF from chi squared table(c) \{Common phenotypes/red grey and scarlet ebony\} are due to2linkage/ description of linkage;\{Rare phenotypes/ red ebony and scarlet grey\} due to\{crossing over/ recombinants\};

Question

5 (a) Restriction \{endonuclease/ enzymes\} used to cut (out the
(Allow) cells to form \{callus/ mass of \{undifferentiated/
totipotent cells\}\};
Callus is subdivided;
Apply hormones to callus to differentiate into plantlets/ Plantlets \{transplanted/put\} into sterile soil;
(c) (i) 'Roundup’ will not kill crop but it will kill \{other plants / weeds\};

Reducing competition in the field;
Allowing increased yield;
(ii) There will be increased use of herbicide;
a reduction in biodiversity/ may lead to \{herbicide resistant weeds/ superweeds\} bioaccumulation in food chain;
OR
Dispersal of pollen from crops engineered for herbicide resistance to \{wild relatives/ weeds\};
may lead to \{herbicide resistant weeds/ superweeds\};
OR
Dispersal of pollen from crops engineered for herbicide
resistance to other crops;
May contaminate organic crops;
OR
(GM crop) produces a new protein;
Unknown effects of eating new protein;

Question

Marking details
6 (a) (i) CGC is replaced by TGC/ C is replaced by T ;
Amino acid cys has replaced arg;
(ii) Change in \{protein/ tertiary\} structure/ different protein is made; Max 2 MC1R will not be stimulated (by the hormone);
\{Less/no\} eumelanin will be produced;
(b) (i) Mice with light fur found in an environment providing \{light backgrounds/sandy beaches\} AND mice with dark fur in \{forest /dark backgrounds\}/
Dark fur is found in the darker background/
light fur is found in the lighter background;
For camouflage/ OWTTE;
(ii) Small populations (of mice); 1
(iii) Mice with light fur \{are less easily seen/caught by predators/ correct reference to camouflage/ have a selective advantage\};
Light fur mice (survive to) reproduce and pass \{allele C/ advantageous allele/ light fur allele\} to next generation;
Increasing the frequency of the allele;
95% of population (have allele C);
(iv) \{Genetic/behavioural/geographic/allopatric/reproductive/
sympatric/ seasonal/ temporal\} isolation;

Question

Marking details
(a) Primary: environment not previously colonised/ from bare rock;

Secondary: environment has soil/previous inhabited;
(b) (i) Acid/acidic; NOT low
(ii)

feature	Betula	Ulex
pH	(from 3.56 to 4.24, difference of 0.68) Increases $\mathrm{pH} /$ makes more alkali/ makes less acidic/	(from 3.56 to 3.55 difference of 0.01) Not much/ no change/ no effect/ slight decrease;
Phosphorus	(from 3.88 to 4.7 difference of 0.82) Increases a lot	(from 3.88 to 4.16 difference of 0.28) Small increase;
Nitrate	(from 0.68 to 0.84 difference of 0.14) Increases	(from 0.68 to 2.37 difference of 1.69) Very large increase;

1 mark for valid COMPARISON of each feature
(c) (i) Ulex europaeus;
(ii) The \{invading /dominant/ new/ named species\} \{change the soil chemistry/ named change\};
Giving them a competitive advantage/ competition for named resource/ existing species are at a disadvantage/ so are better suited to the environment;
(d) (i) Climax community;
(ii) Increases;
(iii) \{C. vulgaris /E. cinerea /E. tetralix\} are disappearing from plus B and plus PS;
These are surviving in plus U;
Names must be included to access any marking points

Question

8 (a) A* Sepal/calyx -tough leaf-like- to protect more delicate parts \{in bud/ when immature\}/ can be coloured to attract insects/ green for photosynthesis;

B* Petals/corolla - large/brightly coloured/scented - to attract insects ;

C $\{$ Nectaries/nectar/sugar\} to attract insects;
D* Filament - thin/stalk-like/short/hooked - to hold anthers where they will come in contact with insect/ contains vascular tissue to provide anther with nutrients;

E Anther-- to \{produce/ contain\} \{haploid gametes/male gametes/pollen /microspore\};
F^{*} Anther - is hollow/ has a line of weakness- description of splitting and rolling to put pollen on outside/ correct reference to dehiscence/ getting pollen onto insect;

G* Pollen (grain) - sculptured exine/ has hooks - to attach to insects body;
$H^{*} \quad$ Stigma - $\{$ is sticky - to catch/trap pollen (grains) $\} /\{$ - secretes chemicals/sugar\} - to stimulate pollen tube growth\};

I Style to hold stigma where it will come in contact with insects/ pollen tube \{gains nutrients from the style/ digests its path though the style\};

J Correct reference to relative positions of anthers and stigmas to \{prevent self /encourage cross\} pollination;

K* Ovary - \{walls - to \{protect/contain\} developing ovule/embryo sac\}/ \{ -secretes chemicals - pollen tube growth\};

L* Ovule- integuments - to protect developing embryo;
M (Ovule) - tiny hole/micropyle - to allow entry of pollen tube;
N Good drawing correctly labelled with at least 4 of above;
O Appropriate means of ensuring cross pollination, e.g. dimorphism (single sex plants)/ protogyny (ovules mature first)/ protandry (pollen matures first)/genetic incompatibility/ chemical inhibition on the stigma;

To award * there must be a name, a description and a function

Question 8 Total

Question

8 (b) A Sun is source of energy/ energy enters as light energy;
B Photosynthesis converts light energy to chemical energy (in organic molecules);

C \{Not all light/ only some light\} striking plants is used for photosynthesis;

D Some \{is reflected/ passes between \{cells/chloroplasts\}/ wrong wavelength/ is transmitted/ passes through\};

E Correct definition of GPP/ total (bio)mass of (organic) produce/ rate at which products are formed/ $\mathrm{kJm}^{-2} \mathrm{yr}^{-1}$;

F Correct definition for NPP/ Mass available to primary consumers;

Accept correct equation to credit E and F (GPP- Respiration=NPP)

G \{Biomass/plant matter/ chemical energy\} is transferred from producer to \{herbivores/primary consumers\} when it is eaten;

H Not all plant is \{eaten e.g. roots/ digested e.g. cellulose\};
I (Respiration) energy is lost as heat energy/ used for \{movement/ metabolism/ active transport\};

J $\{$ Biomass/ chemical energy\} is passed to \{carnivores/secondary consumers\};

K Energy in \{faeces /urine/ dead bodies\} is passed to decomposers; NOT excretion

L Carnivores are more efficient + protein is more easily digestible/ herbivores are less efficient + cellulose is less easily digestible;

Keeping animals in heated sheds with little room to move about

M Less heat energy will be lost \{if the difference between body temperature and shed temperature is small/ maintaining body temperature\};

N Less energy will be lost in movement if the animals are prevented from moving;

O More of the energy is used for making meat / eggs / milk / increasing \{biomass/ size\}yield;

Question 8 Total

WJEC

245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk website: www.wjec.co.uk

