Surname	Centre Number	Candidate Number
Other Names		2

GCE A level

1075/01

BIOLOGY/HUMAN BIOLOGY - BY5

A.M. FRIDAY, 20 June 2014

1 hour 45 minutes

For Examiner's use only								
Question	Maximum Mark	Mark Awarded						
1.	8							
2.	6							
3.	8							
4.	11							
5.	12							
6.	12							
7.	13							
8.	10							
Total	80							

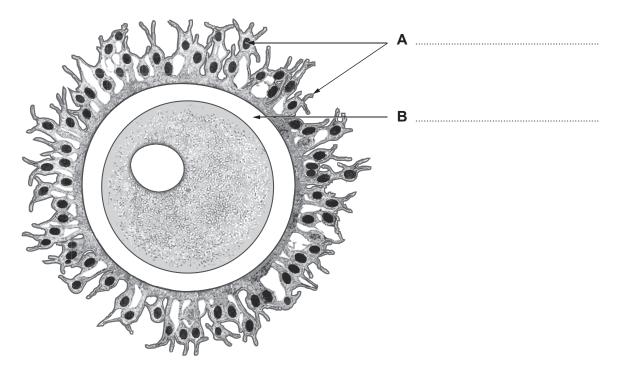
INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet.

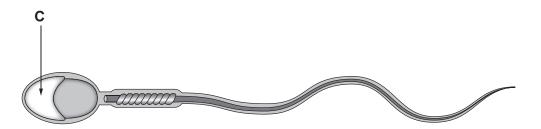
INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

The quality of written communication will affect the awarding of marks.

Answer all questions.


1. The illustration below shows a secondary oocyte.

(a) Label parts A and B.

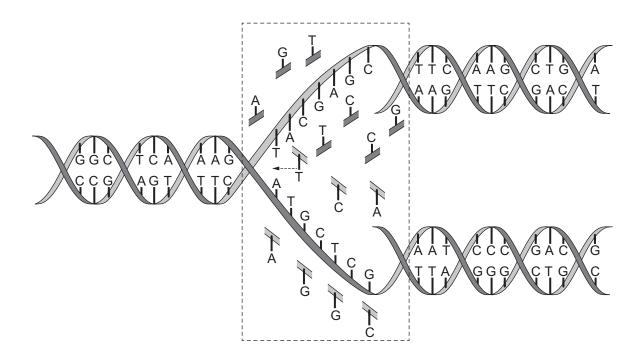
[2]

(b) The diagram below shows a sperm cell.

(i) Name the structure labelled **C**.

[1]

(ii) Describe the role that structure **C** plays in fertilisation of the ovum.


[2]

(c)	Expl	ain each of the following.	[3]	Examiner only
	(i)	cell cleavage		
	•••••			
	(ii)	blastocyst		
	•••••			

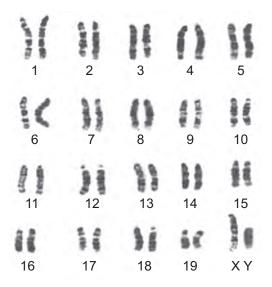
	(iii)	implantation		
	•••••			

	************			1075

8

2. The diagram below illustrates replication of DNA in cells.

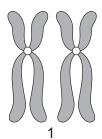
(a)


(i)	Describe the sequence of events shown within the dotted recta above.	ngle in the diagram [3]
·····		
(ii)	What is the role of DNA polymerase in the process?	[1]

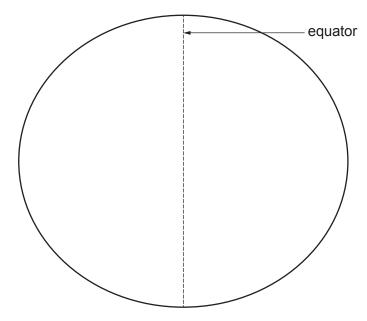
(b)	(b) Explain why the process is referred to as 'semi conservative'.									
		6								

© WJEC CBAC Ltd. (1075-01) Turn over.

Examiner only

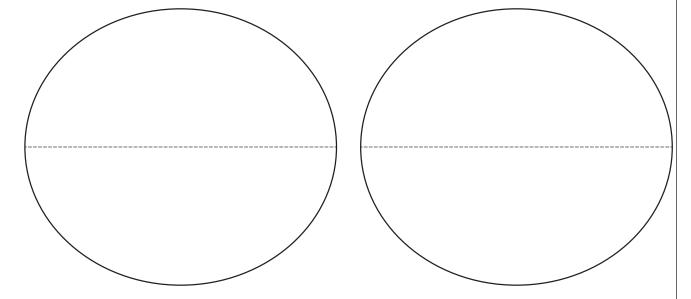

3. The photograph below shows the pairs of chromosomes found in a body cell of a mouse.

(a) What is the diploid number of the mouse?


[1]

(b) The chromosomes in pairs 1 and 19 are commonly represented diagrammatically as:

19


(i) Using the cell outline below draw diagrams to show how these pairs of chromosomes are arranged in **metaphase I** of meiosis. [1]

(ii) On your drawing label; chromatid, centromere, centriole, spindle fibres.

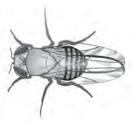
[2]

(iii) Using the cell outlines below draw diagrams to show how the chromosomes would subsequently be arranged in **metaphase II** of meiosis. [1]

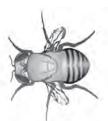
(iv)	State three ways in which meiosis contributes to variation in mouse offspring.	[3]

•••••	 	

8


1075 010007

© WJEC CBAC Ltd. (1075-01) Turn over.


only

1075

The fruit fly Drosophila melanogaster is extensively used to study genetics because it is relatively easy to cause mutations in the flies. Some mutant flies have very small (vestigial) wings:

normal wings

vestigial wings

Other mutants have very dark (ebony) bodies instead of the normal grey body.

grey body

ebony body

In a dihybrid cross, when flies with normal wings and grey bodies were crossed with flies with vestigial wings and ebony bodies all the offspring had normal wings and grey bodies.

The $\rm F_1$ hybrid flies (heterozygous for both traits) were allowed to interbreed freely. The $\rm F_2$ flies were sorted and counted. The results are shown below. (a)

Phen	Number of flice				
Wings	Body	Number of flies			
Normal	Grey	75			
Normal	Ebony	23			
Vestigial	Grey	21			
Vestigial	Ebony	9			

Turn over. © WJEC CBAC Ltd. (1075-01)

(i)	Draw a ge F ₂ phenoty Use the let	rpe ratio.	space provided below, to show the expect					
	Allele for n	ormal wings = N	Allele for ve	estigial wings = n				
	Allele for g	rey body = G	Allele for et	pony body = g				
F ₁ phenoty	pes	Normal wing, grey body	Х	Normal wing, grey body				
F ₁ genotyp	es		X					
Gametes			X					
F ₂ phenoty	pe ratio							

1075

(ii) Using the F₂ phenotype ratio from part (i) calculate the **expected** number of each phenotype in the F₂ generation from a total of 128 offspring, and enter the values in the table below. [1]

Phen	otype	Observed number (O)	Expected number (E)	(O – E)	(O – E) ²	$\frac{(O-E)^2}{E}$
Normal wings	Grey body	75				
Normal wings	Ebony body	23				
Vestigial wings	Grey body	21				
Vestigial wings	Ebony body	9				

- (b) Complete the other columns in the table and carry out a Chi square test, testing the Null Hypothesis that there is no significant difference between the observed and expected results.
 - (i) Use the last column in the table to calculate χ^2 . [1]

$$\chi^2 = \sum \frac{(O - E)^2}{F}$$
 $\chi^2 = \dots$

(ii) Use the 5% probability level and the correct number of degrees of freedom to **circle** the critical value of χ^2 in the table below. [1]

Degrees of freedom	Probability										
	0.9	0.8	0.7	0.5	0.2	0.1	0.05	0.02	0.01		
1	0.016	0.064	0.15	0.46	1.64	2.71	3.84	5.41	6.64		
2	0.21	0.45	0.71	1.39	3.22	4.60	5.99	7.82	9.21		
3	0.58	1.00	1.42	2.37	4.64	6.25	7.82	9.84	11.34		
4	1.06	1.65	2.20	3.36	5.99	7.78	9.49	11.67	13.28		

(iii)	State whether	you	would	accept	or	reject	the	Null	Hypothesis,	for	this	cross	and
	explain why.			-									[1]

Turn over.

© WJEC CBAC Ltd.

(c) In another cross, flies with ebony bodies and scarlet eyes were crossed with flies homozygous for grey body and red eyes. All the F₁ flies had grey bodies and red eyes. When the F₁ hybrid flies were crossed the following results were obtained:

Phenotype		Number of flies	
Eyes	Body	Number of files	
Red	Grey	91	
Red	Ebony	3	
Scarlet	Grey	2	
Scarlet	Ebony	32	

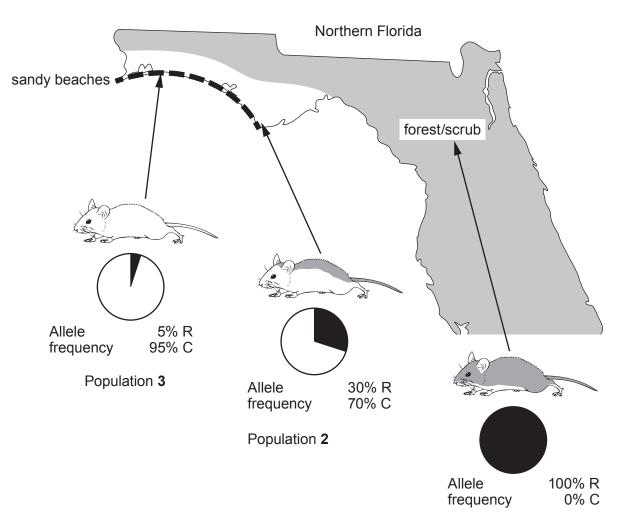
The table shows that some of the offspring were far more common than expecte some phenotypes were very rare. Explain both of these observations.			
	••••••		

11

© WJEC CBAC Ltd. (1075-01) Turn over.

- **5.** The techniques of recombinant DNA technology and micro-propagation are used to produce Genetically Modified Crops. The following summary is adapted from an account given on the Food Standards Agency's web site [www.food.gov.uk]
 - 1. A plant with the desired characteristic is identified e.g. resistance to the herbicide 'Roundup'.
 - 2. The specific gene that produces this characteristic is found in the plant's DNA and cut out.
 - 3. To get the gene into the cells of the plant being modified, the gene needs to be attached to a carrier. A piece of bacterial DNA called a plasmid is joined to the gene to act as the carrier.
 - 4. Once the gene is attached to the plasmid, a marker gene is also added to identify which plant cells take up the new gene.
 - 5. The 'gene package' is put in a bacterium, which multiplies, to create many copies of the 'gene package'.
 - 6. A copy of the 'gene package' is dried onto a gold or tungsten particle and fired into a piece of tissue from the plant being modified. The particle carries the 'gene package' into the plant's cells.
 - 7. The plant tissue is put into a selective growth medium so that only modified tissue develops into plants.

	(a)	Explain how different types of enzymes are used in stages 2 and 3 to produce the 'ge package'.	ene [4]
			·····
	••••		•••••
•			
•			


(b)	Desc	cribe the steps involved in the culture of a large number of genetically identical pla the plant tissue produced in stage 7.	ints [3]
			······································
(c)	(i)	Explain the advantage to farmers of having crops resistant to 'Roundup'.	[3]
	(ii)	Explain why environmentalists might have legitimate objections to using GM cresistant to 'Roundup'.	ops [2]
	•		

12

- A species of mouse *Peromyscus polionotus* found in Florida, USA, has a number of different coat colours. Coat colour in mice is controlled by several genes. Dark fur is produced when the hair producing cells secrete a pigment called eumelanin. A high level of eumelanin is produced when a transmembrane protein called MC1R is stimulated by a hormone.
 - (

a)	The of nu	diagram below show cleotides in the ge	ws part of the amino acid sequence of MC1R, part of the sequence ne for MC1R and how it might change to produce light fur:
Ori	ginal		
Ami	no ac	id sequence	lle Thr Lys Asn Arg Asn Leu His Ser
	eleotic ele R)	le sequence	ATCACCAAAAACCGCAACCTGCACTCG
Cha	anged	l to produce light	fur
Ami	no ac	id sequence	lle Thr Lys Asn Cys Asn Leu His Ser
	eleotic	le sequence	ATCACCAAAAACTGCAACCTGCACTCG
	(i)	Describe the chamolecule.	ange in the gene and the subsequent change in the MC1F [2
	(ii)	Using the informature.	ation provided, explain how this change results in mice with ligh [2

(b) This change in the MC1R gene means that there are two alleles, R and C. The map below shows the distribution of the different coloured mice and the relative frequencies of the alleles R and C in each population.

Population 1

	2]
(ii) Under what circumstance could the difference between the allele frequencion in populations 2 and 3 be explained by genetic drift, despite both living beaches?	
	· • • • •

Use the diagram to suggest how fur colour is related to environmental conditions.

······································	
••••••	

	nder what circumstances would the mouse population become a separate
S	pecies? [1]
•••••	
••••••	
e following	is a quotation from an ecological investigation.
	ths are high-profile ecosystems for conservation action in England, but they are on invasion by Betula spp., Pinus sylvestris, and Ulex europaeus."
	[R.J. Mitchel et al. Journal of Applied Ecology, 1997, 37, 1426-1444

The authors studied a number of heathland sites in Dorset including Arne, Blackhill, and Higher Hyde, where succession to one or another of the three species had taken place. The data below are based on the paper but have been simplified and modified for illustrative purposes. The successional stages in the study were named according to the dominant invasive species; **plus B**, where *Betula spp*, was the invader, **plus PS**, where *Pinus sylvestris* was the invader and **plus U**, where *Ulex europaeus*, was the invader.

(b) The group examined changes in soil chemistry from the original heath stage. Some of their results are summarised in the table below:

soil chemical property	value	by succes	sion stage	
	original heath	plus B	plus PS	plus U
рН				
Arne	3.63	4.01	3.60	3.63
Blackhill	3.52	3.66	3.48	3.54
Higher Hyde	3.53	5.06	3.51	3.47
mean	3.56	4.24	3.53	3.55
phosphorus μgPg ⁻¹				
Arne	2.41	3.85	2.69	3.16
Blackhill	4.15	4.91	3.79	4.55
Higher Hyde	5.08	5.35	3.55	4.76
mean	3.88	4.70	3.34	4.16
nitrate/nitrite μgNg ⁻¹				
Arne	0.51	0.65	0.59	1.16
Blackhill	0.84	0.88	0.97	2.31
Higher Hyde	0.69	0.98	1.17	3.64
mean	0.68	0.84	0.91	2.37

(i)	What do the pH values tell us about the soil in all stages in all sites?	[1]
(ii)	Use mean values from the table above to compare three changes to soil chem following invasion by <i>Betula spp</i> . with the changes following invasion by <i>europaeus</i> .	
	pH	
	phosphorus	
	nitrate/nitrite	

(c) The table below shows changes to the vegetation in the successional stages:

Species	% cover of species (by site)		
(by successional stage)	Arne	Blackhill	Higher Hyde
original heath			
Calluna vulgaris	62.0	66.1	88.2
Erica cinerea	22.4	25.7	2.6
Erica tetralix	9.9	2.6	9.9
Cladonia portentosa	8.5	0	0.5
plus B			
Betula spp.	18.9	11.7	16.5
Agrostis curtisii	0.0	53.6	0.0
Pteridium aquilinum	25.2	7.5	1.6
Calluna vulgaris	0.0	0.0	0.4
plus PS			
Pinus sylvestris	36.2	38.2	
Pteridium aquilinum	0.3	24.7	
Erica cinerea	0.0	0.0	
Calluna vulgaris	0.0	0.0	
plus U			
Ulex europaeus	87.0	75.3	79.0
Calluna vulgaris	14.7	5.8	7.2
Erica cinerea	1.5	11.3	4.3
Erica tetralix	0.1	0.3	0.3

(i)	Which invading species has least impact on the vegetation on the origina heathland? [1]
(ii)	With reference to the data for plus B in both tables suggest a mechanism by which changes to vegetation occur during succession. [2]
•••••	

			
(d)	Sixte	een years later some of these successions have reached their natural conclusions.	Examir only
	(i)	What name is given to the group of organisms that inhabit the ecosystem at the end of successional change? [1]	
	(ii)	What usually happens to species diversity as succession proceeds? [1]	
	(iii) 	Using named species from the table in part (c) explain why conservationists in Dorset are taking steps to prevent plus B and plus PS succession in heathland, but are less worried about type plus U succession. [2]	
	•••••		
			13
			1

ner

8.	Answer one of the following questions. Any diagrams included in your answer must be fully annotated.				
	Either,	(a)	Describe how the structure of a typical flower is adapted for insect pollination and subsequent fertilisation. [10]		
	Or	(b)	Describe energy transfer in an ecosystem. Briefly explain the agricultural practice of keeping animals in heated sheds with little room to move about. [10]		
•••••					
		•••••			

Examiner only

Examiner only

END OF PAPER

10