$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

BIOLOGYIHUMAN BIOLOGY AS/Advanced

JANUARY 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2012 examination in GCE BIOLOGY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Unit Page
BY1 1
BY2 11
BY4 18
HB2 26
HB4 35

BY1

Question Answer Mark

1. (a) (i) Mitochondrion/ mitochondria 1
(ii) Respiration/ aerobic respiration 1
stores \{energy/ ATP\}/ release energy/ \{synthesis/produce 1ATP\}/ release energy / ATP for respiration =2 marks NOTproduction of energy
(iii) muscle / liver/ epithelial cells of small intestine / cells of 1proximal convoluted tubule/ neurones/ companion cells/sperm/ secretary cells NOT muscle tissue/ the liver/ cardiactissue
(b) A 1
(c) allows transport of $\{$ messenger/ mRNA $\}$ / nucleotides/ 1
ribosomes NOT out and in
2. (a) nitrogen (not: N) 1
(b) (i) heat/boil with $\{$ Benedict's/ Fehlings $\mathrm{A}+\mathrm{B}\}$ solution; NOT boil 1
with acid 1colour change from blue to \{green/yellow/orange/brick red/brown\}
(ii) A 1
(c) C 1
(d) (i) D 1
(ii) saturated- no double bonds/ all carbon atoms have/attached 1to two hydrogens ;Fewer hydrogen atoms (or converse) 1Must have comparison for each
3. (a) (i) hydrogen/H 1
(ii) \{Holds/binds\} \{cellulose/glucose\} \{chains/molecules\} 1 together/ forms microfibrils;
strengthens (the wall)/ (cellulose fibres are) strong/ rigid/
gives structural stability/
can resist turgor/ osmotic pressure/ prevents plant cells bursting.
(b) (i) condensation/ polymerisation 1
(ii) (Has) amino acid (added)/glucosamine
(to form a mucopolysaccharide)/ amine/ NH_{2}
(iii) (exo)skeleton - strong/waterproof/ light/ rigidity/ tough 1

NOT exoskeleton gives protection
(c) (i) glycogen 1
(ii) starch (accept amylose/ amylopectin) 1
Question Answer
4. (a) (i) 0.26 1
(ii) concentration of substrate NOT amount/ availability ofActive sites
(b) (i) Less/low kinetic energy ; 1
fewer successful collisions/ \{enzyme substrate/ES\} 1complexes formed/ ORA
(ii) enzymes denatured/ alteration in tertiary structure/ 3Dstructure;breaking of $\mathrm{H} /$ hydrogen bonds; \quad NOT disulphideactive site altered/ active site denatured;substrate cannot bind/ less enzyme substrate complexesformed (any three)(c) (i) Must be a curve starting at origin and may meet $30^{\circ} \mathrm{C}$ line butnot levelling off
(ii) \{shape/structure\} of inhibitor similar to 3 substrate/complementary to active site; \{Fits/ fills/ bonds/ attaches\} to active site/ competes for active site;
(As it has a similar shape to the substrate it competes for the active site $=2$ marks.)
At higher substrate concentration there is a greater chance of Enzyme substrate complexes forming / effect of inhibitor is diminished/ the substrate outcompetes the inhibitor/ ORA
5. (a) deoxyribose/ pentose/ 5 C sugar
(b) (i) A-T-A-G-C1
(ii) Guanine pairs with cytosine/ G pairs with $C=60 \% / G+C=2$ 60\%;
$A+T=40 \%$
$A=20 \%$
(any two)
Correct answer $=2$ marks
(Total 4 marks)
Question Answer
6. (a) (i) JKLHI 1
(ii) I = telophase 1
$\mathrm{L}=$ metaphase 1
(b) (i) interphase 1
(ii) ATP production/ metabolically active; 2Replication of DNA; NOT synthesis/ doubling\{Making/ replacing\} new organelles/ replication ofmitochondria/ chloroplastsNOT replication of organelles
Protein synthesisCell increase in size (not growth) (any two)
(c) DNA Doubled / DNA content increased from 20 to 40 1
and then halved (to maintain DNA content) (in two daughter 1cells.)(ignore reference to chromosomes)
(d) Two genetically identical daughter cells are produced; 2
\{Genetically identical/ clone\} of parent cell.
Question Answer
7. (a) $\quad \mathrm{A}=$ phospholipid head/hydrophilic head/phosphate/polar 1 group;$B=$ hydrophobic tails/ fatty acids/ non polar tails:1(Not: tails/ lipid layer)C = transmembrane protein/ carrier protein/ channel protein/intrinsic protein.
(b) (i) As lipid solubility increases the rate increases; NOT rate of2reaction
Membrane contains (a double layer) of phospholipids/Lipid soluble substances can \{move/pass/ diffuse\} throughthe membrane (more easily than water soluble substances.)(any two)
(ii) small molecules diffuse faster(or converse); 1Higher kinetic energy/ easier to pass between phospholipid 1molecules.
(c) concentration/ diffusion gradient/ concentration difference; 2\{amount/number\} of carriers/ channel proteins/ larger surfacearea contains more carrier proteins;temperature. (any two)
(d) vitamin B_{1} - polar/ ionic; 2

Cannot pass through phospholipid layer/ hydrophobic region;
Uses protein channels/ carriers/ transport proteins/
Hydrophilic (lining to) channels;
(any two)

Vitamin K - non polar/non ionic;
dissolves in phospholipid/ hydrophobic regions; 2
so can pass (directly) through phospholipid/ hydrophobic regions;
(any two)
8. (a) A. enzyme (molecules) \{fixed/ bound/ trapped\} in an \{inert support/ matrix\}

B alginate beads/ gel membrane, /adsorbed (NOT absorbed)onto nylon/ gel capsule/ cellulose

C Product not contaminated

D reuse of enzymes/recovery/ easily separated.
E stable/ tolerate wider range of conditions
F for example pH , temperature/ higher temperatures than normal/ denatured at higher temperatures

G several enzymes can be used together/ with differing pH or temperature optima.

H rapid/ greater productivity

Biosensors

I accurate/ specific
J detect/sensitive to low concentrations/ clinistix

K used in diagnosis of diabetics/ diabetes
L \{Biosensor/electrode probe\} has a specific enzyme immobilised in a membrane/ glucose oxidase in context

M glucose diffuses into the immobilised enzyme layer/ through selectively permeable membrane
$\mathrm{N} \quad$ (enzyme together with transducer) produces an electrical signal in response to substrate transformation/ chemical to electrical signal

O size of signal proportional to concentration of product/ substrate (Any 10 out of 15 points)
8. (b) A

A primary structure, \{sequence/ order\} of amino acids in its polypeptide chain

B linked by peptide bonds

C secondary structure consists of $-\alpha$ helix/ pleated sheet
D hydrogen bonds
E tertiary structure described - 3D folding/ irregular/ further folding

F as shown by globular proteins
G disulphide bridges/ ionic/ hydrogen/ hydrophobic (any two)
H Quaternary structure described- combination of two or more polypeptide chains

I Some proteins have non-protein groups/ prosthetic groups
J enzymes - function or description of
K antibodies/hormones/ plasmaproteins with function
L haemoglobin - \{carries/ transport\} of oxygen
M fibrous proteins + example connective tissue/ keratin/ collagen

N Function of fibrous protein - strength
O carriers in active transport/ facilitated diffusion
/fibrinogen in blood clotting /histones/ ribosomal proteins
(Any 10 out of 15 points)

BY2

Question Answer Mark

1. (a) Label parts \mathbf{A} to E on the diagram.all correct1
A mouth / buccal cavity
B oesophagus / gullet/ esophagus
C stomach
D small intestine / duodenum / ileum
E large intestine / colon
(b) (i) digestion $\mathrm{A} \quad \mathrm{C} \quad \mathrm{D} \quad 1$
(ii) absorption D E 1
(c) different parts carry out different functions / provide different
conditions for enzymes/different food groups digested in different areas
(d) (i) lives in or on another organism NOT lives off of max obtains nourishment/ nutrients/ products of digestion from the host provides no benefit / causes harm to its host
(ii) region D has high concentration of products of digestion / tapeworm can absorb nutrients/ nourishment from the digested food
(e) peristalsis:
hooks / suckers / scolex to attach to the gut wall NOT hookers digestive enzymes:
(thick) cuticle / secretes mucus / secretes enzyme inhibitors NOT coating/covering / waxy cuticle
(f) increases chance of (species) survival / infecting a new (intermediate) 1 host/ many eggs will not survive
Question Answer Mark
2. (a) (i) Arthropoda 1
(ii) jointed legs max 2exoskeletonfluid-filled body cavity / haemocoel/ open circulatory systemSegmentation/ segmented body NOT large brain
(b) (i) a group of organisms that can interbreed / breed with each other to produce fertile offspring
(ii) Genus 1
(iii) DNA base sequencing / hybridisation/ sequencing analysis/ DNA 1electrophoresis Not DNA analysis/ analysis alonegenetic fingerprinting or profiling/amino acid sequencing of proteins / differences in protein structure(not: biochemical methods unqualified) NOT compare DNA/ genes
(iv) high level of similarity shows that they are closely related / converse 1 argument. Needs to relate to 2 a (iii)
Question Answer Mark3. (a) (i) Transpiration/ evapotranspiration
3. (a) (i) Transpiration/ evapotranspiration1
(b) Potometer NOT podometer 1
(c) (i) graph: 4
Axes Correct and labelled. Using labels from table, axes correct. 1
Scale Appropriate with over half of paper used. (1)Plot All correct, +/- 1 small square (1)Curvel Line Well drawn through points (1)
(ii) as wind speed increased distance travelled increased; 2
NOT rate of transpiration maxwind removed water vapour from leaf surface / removes diffusion shells / removeswater molecules from the leaf's microclimate/increased diffusion gradient between inside and outside of leaf(not: blows water away)
(iii) water lost from leaves / by transpiration; max 3causes tension on water molecules;cohesive force between water molecules ;adhesive forces between water molecules and xylem/vessel walls;water molecules pulled into / up xylem/ vesselNOT hydrostatic / root pressure
(d) (i) Pumped/ moved out of guard cells/ no longer pumped in 1
(ii) increased water potential , so water moves out 1
(iii) decreased water, so decreases volume of cell/ flaccid/ cause walls to move together 1
(e)

Factor	Effect on rate	Explanation
	of water loss	
increased	Increase /	Reduces concentration/diffusion gradient/ water
Humidity	$\underline{\text { Decrease }}$	potential gradient between inside and outside leaf
increased	$\underline{\text { Increase } /}$	Greater rate of evaporation from surface of leaf /
Temperature	Decrease	increased KE (of water molecules)

Question Answer Mark
4. (a) (i) Contraction of $\{$ left ventricle/ ventricular systole $\}$ causes a \{surge / increase in blood pressure\};
pressure drops when the \{left ventricle relaxes/ ventricular diastole\};
pressure in aorta does not fall to zero because of the closing of the
\{aortic / semi-lunar valve\};
\{elastic recoil/ elasticity\} of the arteries maintains blood pressure.
(ii) Friction/ resistance with vessel walls / increased cross-sectional / surface area of arterioles / blood vessels distance from heart increased causes progressive pressure drop/ Not reference to capillaries
(b) (i) R ;
highest pO_{2} / oxygen level OR lowest pCO_{2} / carbon dioxide
(ii) at arterial end:
max
hydrostatic pressure (forcing liquid out of capillaries) greater than the osmotic pressure (drawing water in)
at venous end:
hydrostatic pressure has decreased;
water potential gradient / high osmotic pressure in capillary or osmotic pressure greater than hydrostatic pressure causes an inward flow ORA;
not all water (re)absorbed into capillary, reject all references to blood
(iii) Drains/ removes (excess) tissue fluid from the tissues / prevents 1 build up of tissue fluid / return (excess) tissue fluid to blood via lymphatic system NOT ref to waste products alone

Question
5. (a)

1 mark each correct ROW

Statement	Fish	Amphibia	Reptiles	Birds	Mammals
1. Fertilisation is always internal			\checkmark	\checkmark	\checkmark
2. Eggs are laid in an aquatic environment	\checkmark	\checkmark			
3. The embryo is surrounded by a membrane called the amnion			\checkmark	\checkmark	\checkmark
4. Both fertilisation and embryo development are always internal					\checkmark

(b) (i) lowest supply of \{nutrients / food\};
max
embryo cannot complete development inside egg/ \{poorly/less\}
developed at hatching;
embryo unable to care for itself after hatching / parents have to \{feed
/ keep warm\} (due to lack of feathers)/ cannot feed itself;
(ii) more \{time / energy/ resources\} used to care for offspring/ more offspring would need too much \{time / energy/ resources\} to look after;
increased chance of survival of offspring/ less competition between offspring;
(c) (i)
incomplete metamorphosis
NOT stage metamorphosis
(ii) nymphs / instars
(iii) nymphs \{go through a series of moults/ shed exoskeleton several times\} (to become the adult); NOT skin/ outer layer exoskeleton is \{hard/ limits growth\}; exoskeleton can only \{be stretched/ grow\} when newly formed/ \{length/ size\} can only increase following a moult; rapid increase in length before exoskeleton hardens
(d) Tracheae/ tracheoles; NOT trachea spiracles
Question Answer Mark
6. (a) Describe the uptake of water by plants from the soil into the xylem 7
Explain the role of ions in this process. 3
A water absorbed by the root hair cells
B (water can be) \{absorbed into / moves through\} cell walls
C moves (across cortex) via apoplast routeD (can also move) across plasma membrane / into cytoplasmby osmosis
E (water) moves from the cytoplasm of one cell to the next viaplasmodesmata
F (called the) symplast route
G (water can also) move through cytoplasm and vacuoles viavacuolar routeH Casparian strip / band in walls of endodermal cellsI made of suberin / waterproof
J stops apoplast route / water forced into symplast route Max 7
K ions absorbed into root hair cells by active transport
L Ions lowering water potential in root hair cellsM at the endodermis ions absorbed into cytoplasm by activetransport/ uptake
N ions travel (through pericycle) into xylem
O lowers water potential in xylem
P ref to lower water potential in root hair cells or xylemincreasing osmotic gradient between soil (solution) and cellcontents / creates osmotic gradient across root Max 3
(b) Explain why large, multi-cellular organisms have evolved specialised surfaces for gaseous exchange.
Describe and explain how terrestrial mammals are adapted for gaseous exchange in air.
A metabolic needs (approx) proportional to volume/ larger organisms need more oxygen

B Larger organisms external surface insufficient for gas exchange

C diffusion (of respiratory gases) proportional to surface area
D surface area : volume ratio is too small/ larger animals have a smaller SA:vol ratio (to supply metabolic needs)

E diffusion distances too large
F not enough O_{2} can diffuse / O_{2} cannot diffuse fast enough (to the cells furthest from surface) (to meet metabolic needs)

G \{gas exchange surface folded/ large number of alveoli\} - to increase surface area

H internal lungs
I (to) reduce water / heat loss NOT prevent
J gaseous exchange takes place in the alveoli
K thin walls - reduce diffusion distance
L (layer of) moisture - for gases to dissolve in
M blood supply/ capillaries - $\{$ maintain concentration / diffusion gradient (between alveolar air and blood)/ transport absorbed gases\}

N haemoglobin (in erythrocytes) - transport of oxygen
O ventilation mechanism/ description of ventilation mechanism
$\begin{array}{llll}P & \text { (to) replace stale air with fresh air / enable continuous } & \max & 7\end{array}$ exchange of gases

BY4		
Question	Answer	Mark
1. (a) (i)	A = Dendrite(s), accept dendron;	
	B = Axon/ axoplasm;	
	C = Node(s) of Ranvier;	
	D = Synaptic knob/motor end plate/ axon ending/ axon terminal/ synaptic bulb;	4
	NOT synpase/ dendrite/ nerve ending/ neuromuscular junction	
(ii)	Muscle;	1
	Gland; (name = neutral)	1
(iii)	Grey matter	1
(iv)	Ventral (root) (ref to ganglion $=$ neutral)	1
(b) (i)	Schwann cell;	3
	coils/ wraps/ folds/ spreads/ grows/ surrounds;	
	NOT fuses/ binds/ accumulates	
	(cell) membrane / (phospho)lipids	
(ii)	Electrical insulation;	
	Increase distance of local circuits or currents/ saltatory	
	conduction (or description of);	
	Speed up transmission/ impulses travel faster;	
	Protection of axon / Dendron; NOT protection alone/	Max 3
	protection of nerve	
	Reference to preventing ion exchange/ depolarisation/ action	
	potential	

(ii) Ribose; 1
(iii) Adenine; 1
(b) Hydrolysis/hydrolyse;

Enzyme / ATPase; NOT Synthetase
(ATP)to ADP and iP/ Pi/ phosphate;
Ref. 30.6 KJ; Accept answer in range $30-30.9$
(c) (i) S ;

R;
s;
(ii) Codes (of primary structure) of protein or enzyme or
polypeptide/ allows mitochondria to replicate/ self replication
(iii) Chemiosmosis;

Protons/ $\mathrm{H}^{+} /$hydrogen ions; Not hydrogen or atoms or molecules

Pumped (from matrix) into inter membrane space;
Using energy from passage of electrons along the ETC;
Accumulation of hydrogen ions;
Question Answer Mark
3. (a) (i) Photosynthesis produces oxygen/ photolysis produces oxygen/ light dependent stage produces oxygen; Aerobic bacteria/ bacteria need oxygen for respiration; Most bacteria \{move/ attracted\} to (blue and) red regions; Most \{photosynthesis/ photolysis occurs/ more oxygen is released\} in the (blue and) red regions / at these wavelengths/ frequencies ($650-700 \mathrm{~nm}$);
(ii) A Light Dependent stage;
B (Absorbed) energy passed to reaction centre or primary pigment or chlorophyll a;
C Excites electron or electron lost/ emitted;
D Reference to PS II;
E Photolysis;
F Use of photolysis equation/ or description of;
G Replace electrons lost (from PS II);
H Oxygen released
(b) Evenly/ equally (along strand)

Max 5
(c) (i) Chlorophyll a; NOT A
(ii) Carotenoids; xanthophylls; chlorophyll b; chlorophyll c; carotene

Accept phytochromes
(iii) Increases range of wavelengths/ frequencies (of light) used/

Absorb different wavelengths (of light);

More photosythesis/ increased rate of photosynthesis;

More sugar/ carbohydrates/ glucose made;
Question Answer Mark4. (a) (i) $A=C o r t e x ;$ (nephron $=$ neutral)(ii) $\mathrm{X}=$ (proximal) convoluted tubule / (distal) convoluted tubule;$\mathrm{Y}=$ Glomerulus / Malpighian body/ glomerular capillariesZ = Bowmans capsule;3
(iii) X transverse section, $\mathrm{W}=\mathrm{LS} . /$ cut at different angles/ planes/axes/ OWTTE(iv) loop of Henle;ascending or descending;collecting duct;3
(b) Increased/ high, blood/ hydrostatic pressure in glomerulus; 1(c) Afferent arteriole/ Blood vessel wider than efferent/ (ordescription of process)/ ORA;Pores/ gaps/ fenestrations in endothelium / capillary wall;Pass through pores, in basement membrane;Ref size/ charge allowing only certain substances through/molecular sieve;2 examples of substances which pass through;2 examples of substances which do not;Filtration between (feet) of podocytes;
Ref. Hydrostatic pressure having to overcome the waterMax 6potential of blood;
5. Bacteria / fungi / decomposers;
Accept putrefication/ decomposition
Ammonium ions;
Nitrosomonas;
Nitrites/ $\mathrm{NO}_{2}{ }^{-}$,
Nitrobacter;
Rhizobium;
Azotobacter;
6. (a) Glucose is a monosaccharide;
(and so) can be used instantly/ OWTTE for respiration / directly into glycolysis/ primary metabolite;

Glucose more easily absorbed/ ORA;

Lactose is a disaccharide/ made of glucose and galactose;

And so needs hydrolysis/ broken down/ digested (into monosaccharides) ; REJECT converted unqualified

Enzyme/ Lactase needs to be synthesised or made/ ORA
(b) A Slow start/ lag phase;

B Adjusting to surroundings/ synthesis of enzymes/ DNA replication/ small population size;

C rapid increase in population/ log/ exponential phase;
D No limiting factors/ excess glucose; NOT plenty of food

E Levels off / second lag phase;

F when glucose runs out
G Synthesis of enzymes / lactase (to hydrolyse lactose);
H To glucose and galactose;
I Rapid rise (when lactose is hydrolysed);
J Then levels off / stationary phase/ carrying capacity reached;

K Reason for stationary phase/ lactose used up/ toxic waste produced/ oxygen running short;

L Use of correct figures;
7. (a)

G ATP synth(et)ase; reject ATPase

H which produces ATP from ADP and iP

I NAD acts as hydrogen carrier/ is reduced
J in Glycolysis / link /Krebs
K FAD acts as hydrogen carrier/ is reduced

L in Krebs;

M Reduced NAD/ FAD carry protons/ electrons to ETC;
N Coenzyme A;

O Joins with/ carries an acetyl/ acetate group;

P electron carriers in ETC.;

ACCEPT mark points on a clearly annotated diagram

Max 10
7. (b) A Sodium potassium pump;

B $3 \mathrm{Na}^{+}$out, $2 \mathrm{~K}^{+}$in (must refer to ions)/ Membrane more permeable to potassium ;

C creates a potential difference across membrane/ membrane polarised/ inside negative compared to outside/ inside -60 / -70 mV; ;

D resting potential;
E threshold reached;

F sodium (voltage gated) channels/ gates open/ more permeable to sodium;

G sodium diffuses/ (accept floods) in;
H Ref to depolarisation/ +40 mV ;

I Potassium (voltage gated) channels/ gates open;

J sodium channels close;

K Ref to repolarisation;
L Synaptic knob/ presynaptic membrane $+\mathrm{Ca}^{2+}$ channels open/ membrane becomes more permeable;

M Synaptic vesicles fuse with presynaptic membrane;
NOT bind

N Exocytosis/ Description of neurotransmitter secretion; NOT synaptic vesicles

O Receptors on post synaptic membrane; Max 7 A-K
P Sodium channels open on post synaptic membrane Max $3 \mathrm{~L}-\mathrm{P}$

HB2

Question Answer Mark

1. D;E;B;A;
C;
(four marks for all five, three for four, two for three and one for two)
2. (a) blood travels through it twice during one complete circuit; separate \{pulmonary/ to lungs\} and \{systemic/ to body\} circulations; maintains high blood pressure (to body); rapid circulation of blood;
no mixing of oxygenated/deoxygenated blood;
(b) (i) position of both in right atrium (accept on dotted lines);

AVN below SAN (only if both in right atrium);
(ii) prevents direct transfer of wave of excitation to ventricles/ prevents atria and ventricles from contracting at the same time;
allows time for ventricles to fill;
wave is picked up by AVN;
which transfers to bundle of His/Purkinje/Purkyne fibres; causes contraction of ventricles from base;
(c) $\underline{60000}$;

800
75 beats per minute;

[^0]3. (a) (i) Small/ steady increase in first few years;
followed by rapid/ drastic increase; (general point for increases between 1981-1990); cases in homosexual/bisexual always lower;
(ii) education/advertising campaigns/ greater awareness;
needle exchange schemes/ sterile needles available/ no
sharing of needles;
safer sex/greater use of condoms;
better drugs/ medication/ treatment available;

$\begin{array}{llr}\text { (b) means they have antibodies to virus; } & 3 \text { max } \\ \text { can be a long time before symptoms/ AIDS show; } & \\ \text { latent/ dormant period; } & \\ \text { immune system may still function; } & \\ & \text { low helper T cell count; } & 2 \text { max } \\ \text { (c) } & \text { caused by a virus; } & \\ & \text { antibiotics not effective against viruses; } & \\ & \text { only effective against bacteria; } & \end{array}$

```(d) (RNA/nucleic acid not stable/)mutates;2 maxdifferent strains/ antigenic types exist;so body would make wrong antibodies/antibodies noteffective;takes time to develop vaccine;
```

(e) virus destroys T helper cells; 3 max

```\(B\) cells not stimulated;fewer antibodies produced;fewer T killer cells;pathogen not destroyed;pathogen numbers increase.
```

Question Answer Mark
4. (a) (i) absorbs carbon dioxide; 2 maxprevents (high levels) of carbon dioxide being breathed infrom chamber;which would affect breathing rate;could have adverse effect on body's cells/ causes harm;(ii) sterilize mouth piece/change mouth piece/change soda lime;1
(b) (i) 1) $0.5 \mathrm{dm}^{3}$; 22) $3.75 \mathrm{dm}^{3}$;(ii) air in alveoli stationary;2 maxnot all passes out at each expiration/ref dead space;inspired air has to exchange gases with alveolar air;
(c) measure air movement/ description; 2 maxlungs never completely deflate;therefore spirometer not able to measure volume of static air/residual volume;
(d) (i) reduces surface tension; 2prevents alveolar walls from sticking together/collapsing;(ii) oxygen can't reach exchange surface/blood becomes1deoxygenated/carries less oxygen/lowers rate of respiration;
Question Answer
5. (a) no valves;small/narrow lumen;more elastic in walls;thick(er)/muscular walls/ tunica media;less collagen;
(b) (i) artery; 1
(ii) ventricular contraction/systole at X ; 1
ventricular relaxation/diastole at Y ; 1
(iii) greater distance from heart; 1
ref to friction; 1
(Total 9 marks)
6. (a) (i) reaches maximum later/ quicker response/ longer latent 3 max period;
higher maximum/ more antibodies (in saliva);
decreases after 6/7 weeks; ref. comparative figures;
(ii) antibodies made of protein; 2 max
required to make new antibodies/ lack of protein/ no or fewer antibodies; process is energy dependent;

Question		Answer
7. (a)	A	eliminate vector/mosquito;
	B	drain breeding grounds/increase flow of water;
	C	spray oil on water;
	D	prevents larvae from breathing through tube;
	E	spray with insecticides/synthetic pyrethroids;
	F	where mosquitoes gather;
	G	fish to eat larvae;
H	use of B. thuringiensis/bacteria to kill mosquito;	
I	use of sterile males;	
J	stop mosquitoes from 'biting';	
K	mosquito nets;	
L	cover skin/use repellants;	
M	screen windows;	
N	use of anti-malarial drugs;	
O	possible use of vaccines;	

7. (a) A eliminate vector/mosquito;

B drain breeding grounds/increase flow of water;
C spray oil on water;
D prevents larvae from breathing through tube;
E spray with insecticides/synthetic pyrethroids;
F where mosquitoes gather;
G fish to eat larvae;
H use of B. thuringiensis/bacteria to kill mosquito;
use of sterile males;
J stop mosquitoes from 'biting';
K mosquito nets;
L cover skin/use repellants;
M screen windows;
N use of anti-malarial drugs;
O possible use of vaccines;
(Total 10 marks)

Question

7. (b) A protein digestion (begins) in stomach;

B enzyme pepsin (catalyses) breakdown;
C secreted as pepsinogen;
D activated by HCl in the stomach;

E digestion continues in duodenum;
F by trypsin;
G secreted by pancreas;
H activated by enterokinase;
I prevention of autolysis;
J large peptides/ polypeptides formed;
K (peptides bonds) hydrolysed/ broken down by
endo/exopeptidases;
L amino acids produced;
M absorbed by facilitated diffusion/active transport;
N into capillaries/ blood;
O travel via hepatic portal vein to liver;
Question Answer Mark

1. (a) Free living (living in soil) Nitrogen-fixing bacteria. 1
(b) Convert nitrite to nitrate 1
(c) Convert ammonia to nitrite 1
(d) Nitrogen-fixing bacteria in legume roots (or root nodules) 1
Question Answer Mark
2. (a) (i) I. Arrows from high to low concentration 1
II. $A=\mathrm{Na}^{+} \mathrm{B}=\mathrm{K}^{+}$ 1
(ii) K^{+} 1
(b) (i) -70 mV 1
(ii) By means of sodium-potassium pumps 1
Which transport sodium ions out and potassium ions in 1
By active transport /using ATP 1
(c) (i) Fast fatigue more quickly/ work anaerobically/ have less 1
myoglobin/ fewer mitochondria/ smaller blood supply. Any two 1of these features. Must be expressed as a comparison.
(ii) Fast-bursts of speed and power-sprints, jumps, gymnastics, etc.
Slow-prolonged effort, marathons, distance cycling, triathlons, 1 etc.
(d) (i) Motor Neurone Disease 1
$\begin{array}{lll}\text { (ii) Paralysis /impaired use of arms and legs /difficulty in } & 2 \\ & \text { swallowing/breathing/ speaking writing. (Any two) }\end{array}$

Total 14 marks
QuestionChloroplast2
(b) $\quad \mathrm{NADH}\left(\right.$ or $\left.\mathrm{FADH}_{2}\right)$ Chlorophyll 2
(c) Oxygen NADP ${ }^{+}$ 2
(d) Inner membrane Thylakoid membrane 2
(e) Intermembrane space Thylakoid compartment 2
to
to

Stroma
(f) Flow of protons through membranes/through stalked particles2 (ATPase)/synthesising ATP from ADP/both involve pumps (or any sensible suggestion) (Any two).
(not simply a repetition of the first part of question)
4. (a) (i) A known volume $\left(\mathrm{X} \mathrm{cm}^{3}\right)$ is taken from culture and this is diluted (usually with $9 \mathrm{~cm}^{3}$) of sterile culture medium - sample 1
$X \mathrm{~cm}^{3}$ are then taken from sample 1 and diluted in the same way.

The process is repeated to give a series of cultures of progressively higher dilution, and a suitable sized sample $\left(\mathrm{Y} \mathrm{cm}^{3}\right)$ is taken for counting.
(ii) The number of cells in the original culture is too great to count.
(iii) Four dilutions therefore the original concentration is $85 \times 10^{4} / \mathrm{ml}$ 20 ml culture therefore total number $=85 \times 20 \times 10^{4}$ 1 17×10^{6} or 1.7×10^{7}
(iv) Viable counts don't include dead bacteria. 1
(b) (i) Lag phase, exponential or log phase, stationary phase, death phase.
(ii) A - Few individuals present/Very low or no reproduction/period of acclimatisation.

B - No limiting factors/surplus of resources/maximum rate of
\quad reproduction/birth rate >> death rate.

C - Carrying capacity reached/birth rate $=$ death
rate/resources (nutrients, oxygen) limiting.

D - Carrying capacity declining/less nutrients or oxygen/pH change/death rate >> birth rate/toxic wastes accumulating.

ALL ANSWERS MUST HAVE SOME EXPLANATION IN

EACH CASE. JUST COMPARING BIRTH RATES AND

DEATH RATES WITH NO REASONS GIVEN IS NOT ACCEPTABLE
(c) (i) Region B
(ii) Region with - majority of viable/rapidly reproducing bacteria/fewest dead.
Question Answer Mark
5. (a) (i) Glycolysis 1
(ii) Cytoplasm/ cytosol 1
(b) (i)

ATP used	ATP Produced	NADH produced
2	0	0
0	4	2
	(one mark for each correct column)	

(iii) 3 molecules of ATP 1
(c) \quad NADH yields $3 \times 2=6$ ATP 1

+ 2 net gain - (phosphorylation etc.) 1
Total $8 \times 30=240 \mathrm{~kJ} / \mathrm{Mol}$. 1
(d) (i) Pyruvate is decarboxylated/loses 1 mol of CO_{2} 1
Pyruvate is also dehydrogenated/loses hydrogen to form 1
acetate
acetate + coenzyme A = acetyl coenzyme A 1
(ii) Mitochondrial matrix. 1
(e) Glycogen. 1
Question

6. (a) Cortex 1
(b) (i) Removal of water from the lumen of the tubule. 1
(ii) Since transport out of Na^{+}still takes place 1
a water potential gradient is produced across the membrane. 1
and water diffuses out by osmosis. 1
(c) $90 \mathrm{mg} / 100 \mathrm{ml}$ 1
(d) (i) Homeostasis 1
(ii) An elevated concentration of glucose is filtered into the 2 tubule/there must be a maximum level that can be absorbed.
(e) Loop of Henle -
Ascending limbAny 2Distal convoluted tubule
7. (a) (i) A. Prevent contamination of cultures and environment 1
B. Sterilise work surfaces 1
C. and disinfect after use. 1
D. Autoclaved/gamma irradiated glassware. 1
E. Open bottle by holding in one hand and removing cap with 1 little finger of the other.
F. Lighten Bunsen burner to create rising air current. 1
G. Flame mouth of bottle 1
H. Use of flamed inoculating loop. 1
I. Minimum exposure of medium in Petri dish. 1
J. Tape lid on to dish. 1
K. Incubate at $25^{\circ} \mathrm{C}$. 1
(Seven marks can be awarded from the eleven available)
(ii) L, M \& N. Use of clothing and masks/restricted access to 3 selected personnel/access via sterile room and change of clothes/constant monitoring of laboratory/UV screens/regular health checks/any sensible additional suggestions.
(Any three)
Question Answer Mark
8. (b) (i) A. CO_{2} combines with ribulose biphosphate 1
B. which is a 5C molecule 1
C. The reaction is catalysed by the enzyme rubisco (RUBP 1 carboxylase)
D. The 6C molecule produced splits into two 3C 1
molecules/glycerate-3-phosphate.
F. These react with ATP 1
G. and are then reduced by NADPH 1
H. both of which have been produced in the light stage.
I. The product is a triose phosphate (glyceraldehyde 1 phosphate)
J. Most of which is used to regenerate ribulose biphosphate. 1
K. The rest is used to synthesise glucose, other sugars, 1 amino acids, etc.
(Seven marks can be awarded from the ten available)
(ii) L. Photosynthesis traps the only primary source of biologicalenergy - sunlight.
M . It uses up CO_{2} (global warming) and regenerates oxygen. 1
N. All food stuffs directly or indirectly traced back to 1 photosynthesis.
O. Source of fibre, coal, timber, oil. (Any examples of non- 1 food materials)
(Three marks can be awarded from the four available)

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk
website: www.wjec.co.uk

[^0]: (d) fat deposits/atheroma builds up on wall of artery (from cholesterol);
 narrows (coronary) artery lumen;
 increased risk of blood clot (in artery); (reject 'clogs')
 glucose/oxygen/blood no longer supplied to (part of) heart muscle;

