Mark Schemes for the Units

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This report on the Examination provides information on the performance of candidates which it is hoped will be useful to teachers in their preparation of candidates for future examinations. It is intended to be constructive and informative and to promote better understanding of the syllabus content, of the operation of the scheme of assessment and of the application of assessment criteria.

Reports should be read in conjunction with the published question papers and mark schemes for the Examination.

OCR will not enter into any discussion or correspondence in connection with this Report.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Biology (7881)

Advanced Subsidiary GCE Biology (3881)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
2801 Biology Foundation 1
2802 Human Health and Disease 16
2803/01 Transport - Written Paper 26
2803/03 Practical Examination 33
2804 Central concepts 40
2805/01 Growth, Development and Reproduction 46
2805/02 Applications of Genetics 55
2805/03 Environmental Biology 61
2805/04 Microbiology and Biotechnology 69
2805/05 Mammalian Physiology and Behaviour 81
2806/01 Unifying Concepts in Biology - Written Paper 91
2806/03 Practical Examination 96
Grade Thresholds 105

2801 Biology Foundation

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme.

You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
$x \quad=$ incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con $=$ contradiction (in cases where candidates contradict themselves in the same response)
sf $=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Abbreviations, annotations and conventions used in the Mark Scheme		l $=$ alternative $;$ $=$ separates NOT $=$ answers w () $=$ words whic $=$ (underlinin ecf $=$ error carrie AW $=$ alternative ora $=$ or reverse	nd acceptable answers for the arking points ch are not worthy of credit are not essential to gain cre key words which must be u forward ording gument	A comma in a information on needed for th 'DO NOT CR other respons ALLOW - alt	any
Question	Expected Answers			al Guidance	Marks
$1$$1 \text { (a) (i) }$	NB For each part of Q1: Some candidates supply a choice of answers or try to qualify a point. If any part of the candidate's answer includes incorrect Biology, then do not award a mark for that part of the question.				1 max
	aerobic respiration / respiration using oxygen ;				
	provides / produces, ATP ;				
	releases / provides, energy;			oduce / create	
	AVP; e.g. Krebs cycle regenerate NAD oxidative phosphorylation		protein synthesis lipid synthesis oxidation of fats beta ox		
$1 \text { (a) (ii) }$	ref spindle / microtubules / cytoskeleton ;			itosis CREDIT micro	1
1 (a) (iii)	contains / has / provides, digestive / hydrolytic / named, enzymes ;			CREDIT secre	
	digestion / destruction / breakdown, of, cell / organelle / foreign body / pathogen / bacteria / unwanted material / unwanted structure ;			CREDIT engu CREDIT ‘kill’ t CREDIT unwa	1 max
1 (a) (iv)	photosynthesis / light absorption / ATP production / NADPH production / carbohydrate production / named carbohydrate production ;			traps light to chlorophyll	1 max
	lipid / protein, synthesis;				

Question	Expected Answers	Additional Guidance	Marks
1 (b)	chlorophyll ;		1 max
	bone / teeth ;	Ignore 'healthy' / 'strong'	
	coenzyme / enzyme activator / prosthetic group ;	Ignore vague references to nerve impulses DO NOT CREDIT 'for enzymes' alone	
1 (b)	phospholipid / membrane / DNA / RNA / nucleotide / NADP / sugar-phosphate backbone / ATP ;	Ignore 'healthy' / 'strong' DO NOT CREDIT 'bilayer' alone DO NOT CREDIT amino acid / triglyceride	1 max
	bone / teeth ;	Ignore 'healthy' / 'strong'	
	AVP ; e.g.phosphorylated sugar (TP / GP / RuBP etc)		
[Total : 6]			

Question	Expected Answers	Additional Guidance	Marks
2 (a)	supply, meets demand / unlimited / adequate / reliable ;	ora for blood ALLOW mass produced	1 max
	less risk of , infection / disease / appropriately named infection / pathogens ;	DO NOT CREDIT ref. to side effects / rejection / blood group matching DO NOT CREDIT ref to 'more effective' DO NOT CREDIT purity	
	fewer, ethical / religious, objections;	ALLOW a specific eg	
2 (b) (i)	restriction / endonuclease / suitable named e.g. ;	DO NOT CREDIT restrictase / restrictive / helicase	1
2 (b) (ii)	ligase;	DO NOT CREDIT polymerase / lyase	1
$2 \text { (b) (iii) }$	vector / plasmid / phage / virus ;	ALLOW liposomes / micro-injection DO NOT CREDIT 'bacteria' unless in context of a bacterial plasmid DO NOT CREDIT an answer that includes an incorrect statement	1
2 (c) (i)	oxygen ;	ALLOW ammonia (for making amino acids) DO NOT CREDIT nitrogen / ammonium / carbon dioxide	1

Question	Expected Answers	Additional Guidance	Marks
2 (c) (ii)	kill cells / toxic ;		
	restricts growth / reduces rate of cell division ;		
	enzymes, denatured / inhibited;	DO NOT CREDIT killed	
	ref. change reaction rate / provides optimum growing conditions / pH decreases to below optimum ;	DO NOT CREDIT 'conditions' without the idea of growth	
		ALLOW the idea of waste taking the system out of optimum growing conditions	
	(waste products will) contaminate / alter , product / factor VIII ;	Ignore 'contamination' unqualified	
	prevents build up of pressure ;		1 max

Question	Expected Answers	Additional Guidance	Marks
3 (a) (i)	cell wall ;		1
3 (a) (ii)	B / D;	Answers need to be in the correct order If a choice of answers given, mark the first answer	3
	A;		
	C;		
3 (b) (i)	3.1 or 3.2 or 3.17 or 3.167 or 3.1674 ;	Correct answer $=2$ marks	
		(Answer should be given to the same number of decimal places.)	
		(Answer does not need to be in the box, units are not required.)	
		If answer incorrect or missing, allow 1 mark if you can see $7 \div 221$ or 100-96.9	2

Question	Expected Answers	Additional Guidance	Marks
3 (b) (iii)	no / less / little , mitosis ;	ALLOW 'cell division' / 'nuclear division' instead of 'mitosis' (but 'replication' not good enough)	2 max
		ALLOW ora (i.e. mitosis only takes place in , root tip / meristem)	
		Ignore ref to growth	
		DO NOT CREDIT ref to cells being in different stages of the cycle	
	cells (not in the root tip) are, differentiated/ specialised / elongating ;	ALLOW ref to named specialised cell / tissue (e.g. xylem / phloem)	
		Ignore ref to growth	
	nuclei missed in section ;		
		[Tot	al : 11]

Question	Expected Answers	Additional Guidance	Marks
5 (d)	Structure	6 marks maximum for structure ALLOW marking points if clearly shown on a labelled diagram	
	(starch is made up of) amylose and amylopectin ;	DO NOT CREDIT amylase (but only penalise once)	
	polymer / polysaccharide;		
	(only) alpha / $\underline{\alpha}$ - glucose ;	DO NOT CREDIT ‘a-glucose' / 'a glucose' / α and β glucose	
	glycosidic, bonds / links (between glucose molecules) ;	ALLOW phonetic spelling ALLOW oxygen bridge or labelled on a diagram DO NOT CREDIT glucosidic	
	part / amylose , is , unbranched / straight ;		
	(amylose / unbranched part is) helix / spiral / coil ;	DO NOT CREDIT α helix	
	part / amylopectin , is branched ;		
	1-6 (glycosidic) bonds / links, where branches occur ;	Carbons must be numbered if accepting from a diagram	
	1-4 (glycosidic) bonds / links , within amylopectin chains / the only bond present in amylose ;	Carbons must be numbered if accepting from a diagram	$\begin{gathered} {[6} \\ \max] \end{gathered}$

Question	Expected Answers	Additional Guidance	Marks
6 (b) (i)		Mark the first on each row.	
	light misses plant (altogether) ;	ALLOW light hits 'non plant' material or plant shaded by other structures (NOT other plants)	
		e.g. of non plant material might include: rocks / bare earth / buildings (NOT clouds)	
	only certain wavelengths of light can be , absorbed / used / fixed (in photosynthesis) ;	ALLOW cannot use green light	
	light reflected by , cuticle / leaf / plant;	DO NOT CREDIT reflected by clouds	
	light misses leaf;	ALLOW light hits non photosynthesising part of plant e.g. of non photosynthesising part of the plant might include: (non green) stem / bark / petal / root	
	light (hits the leaf but), misses chloroplasts / misses chlorophyll ;	ALLOW light passes straight through leaf	
	other limiting factor ;	ALLOW only temperature / CO_{2} as examples	2 max

Question	Expected Answers	Additional Guidance	Marks
6 (b) (ii)	mean value / estimated value ;	ALLOW 'not very accurate'	
	hard to measure (energy transfer values) ;		
	different (energy transfer value) in different ecosystems ;	e.g. larger percentage transfer in aquatic ecosystems	
	different (energy transfer value) between different trophic levels;	Looking for the idea of a comparison between trophic levels rather than a general statement about decreasing energy levels as you progress up a food chain e.g. little energy transferred between producer and primary consumer but more at the next energy transfer	
	reason to explain difference in energy transfer between trophic levels;	Looking for a comparative statement e.g. roots are inaccessible but a bird will eat all of a worm	
	ref efficiency of digestion;	e.g. cellulose / bone / feathers , are relatively undigestible	
	ref activity / metabolism, of organism;	Must include ref to organism e.g. animal movement e.g. animals, run away from predators / chase prey e.g. some animals (use energy to) maintain body temperature e.g. heat loss by an organism DO NOT CREDIT heat loss at a trophic level	3 max
	ref seasonal variation ;		

2802 Human Health and Disease

Question	Expected Answers	Additional Guidance	Marks
1 (a) (i)	epithelium / epithelial ;	DO NOT CREDIT squamous epithelium	1
$1 \text { (a) (ii) }$	cell A goblet; produce / secrete / release, mucus; cell B ciliated (epithelium); move / waft, mucus / dust / bacteria / AW ;	DO NOT CREDIT mucus / mucus-secreting, cell CREDIT mucous (neck) DO NOT CREDIT excrete DO NOT CREDIT cilia cell / cilia	4
1 (b)	secretes more mucus / mucus more viscous / AW ; reduces / stops / AW, movement of mucus / cilia ;	idea of more mucus produced DO NOT CREDIT 'more goblet cells' Look for idea of effect on action of cilia. CREDIT paralyses / slows / inhibits / inactivates CREDIT mucus builds up DO NOT CREDIT destroys / clogs / burns / kills / damages, cilia	2

(c)
pain in, chest / lungs;
persistent coughing ;
shortness of breath / AW ;
(nature of) cough changes ;
voice becomes hoarse ;
blood in sputum / cough up blood / AW ;
tiredness ;
loss of, weight / appetite ;

DO NOT CREDIT symptoms of emphysema or angina e.g. pain in chest when exercising
Look for idea of chronic cough
CREDIT permanent or constant (cough)
DO NOT CREDIT ‘smokers cough' or 'chesty cough'
CREDIT breathlessness / difficulty in breathing / wheezing / noisy breathing / low tidal volume

CREDIT fatigue / exhaustion / lethargy / lack of energy
DO NOT CREDIT apathy

Question	Expected Answers	Additional Guidance	Marks
2 (c)	ref to stress caused by positive result / relief of stress from negative result ; advantages screen embryo / diagnose disease early / before symptoms show ; treat person / disease, early / before symptoms appear / AW ; chance to carry out gene therapy / described ; allow termination / abortion / AW ; fewer people will have that disease ; informs decision making (e.g. about whether to have children); enables change in lifestyle / take preventative action (to delay onset of disease) ; disadvantages genetic underclass / ref to prejudice / AW ; discrimination / abuse of knowledge, by employers / insurance companies / banks / medical profession ; ref. to privacy of information ; inaccuracy of testing ; allow termination / abortion / AW ; discourages people from having children ;	Credit once either advantage or disadvantage DO NOT CREDIT 'may not want to know if have gene' DO NOT CREDIT development of drug to target disease / ref to curing disease DO NOT CREDIT refs to genetic engineering / designer babies, etc. CREDIT allows people to prepare for, the future / child care DO NOT CREDIT ref to economic factors e.g. increased number of terminations / moral / psychological / social issues	4 max
		[Total: 11]	

Question			Expected Answers	Additional Guidance	Marks
3	(a)	(i)	vitamin(s) ;		1
	(a)	(ii)	carbohydrate(s) ;	(a) (ii) and (b) (i) - responses to come from list in table	1
3	(b)	(i)	```carbohydrate(s); fat(s) ; protein(s) ;```	DO NOT CREDIT sugars / starch CREDIT lipids as alternative to 'fat(s)'	2 max
	(b)	(ii)	anorexia (nervosa) / bulimia ;	CREDIT suitable example of a deficiency disease e.g. scurvy / xerophthalmia / osteomalacia / anaemia DO NOT CREDIT rickets / Kwashiorkor	1
3	(c)	(i)	average quantity of, energy / nutrient, to meet needs / to maintain good health ; quantity of, energy / nutrient that satisfies 50% of the population;	CREDIT named nutrient / required as 'meet needs' CREDIT ref. to balanced diet for 'good health' CREDIT exceeds for 'satisfies'	1 max
	(c)	(ii)	look up / identify / use, her EAR ; suggest energy intake, below / less than, EAR / 9-9.2 MJ day ${ }^{-1}$;	CREDIT idea that he has selected her EAR DO NOT CREDIT energy intake same as EAR Must use units DO NOT CREDIT 'about' $9-9.2 \mathrm{MJ}$ day ${ }^{-1}$ DO NOT CREDIT 'eat at EAR or less' CREDIT any figure quoted below 9 MJ day $^{-1}$	2
3	(d)		EAR rises ; energy needed for, development / growth, of fetus ; AVP ; e.g. growth of additional maternal tissue / colostrum / antibody production / mother carrying extra weight	must state what extra energy is used for - not just 'for fetus' CREDIT 'baby' as alternative to 'fetus' CREDIT tissues as breast / blood / fat / uterus DO NOT CREDIT refs to milk / breast feeding	2 max
					al: 10]

Question	Expected Answers	Additional Guidance	Marks
$4 \text { (a) }$	small number of cells in sample / only one sample / only one person sampled ; only one person counting / subjective I may not see all parasites; may be early stage of infection / don't know how long person has been infected ;	mark for ref. sampling (limited / poor) CREDIT 'need to take an average' infers only one sample mark for idea of accuracy of counting mark for idea of stage in infection cycle CREDIT 'different people may have different numbers of red blood cells affected'	2 max
(b) (i)	space taken up by parasites / less space for haemoglobin (in the red blood cells) ; haemoglobin, used / consumed / eaten, by parasites ;	DO NOT CREDIT haemoglobin, destroyed / removed DO NOT CREDIT red blood cells bursting / killed / decreased surface area CREDIT ref to protein in rbc as ref to haemoglobin	1 max
(b) (ii)	fewer (normal) red blood cells / red blood cells misshapen ; less oxygen transported in blood ; oxygen needed for, aerobic respiration in / contraction of, muscles ;	DO NOTCREDIT ref to haemoglobin CREDIT uptake in lungs / delivery to muscles	2 max

Question	Expected Answers	Additional Guidance	Marks
(c)	(female) Anopheles mosquito ; sucks blood from infected person ; parasite in, saliva / salivary glands ; (mosquito) sucks blood from uninfected person ; injects, saliva / anticoagulant, to stop blood clotting ; reference to other means of transmission ; 3 max penalise only once if candidate uses virus / bacteria / disease Pathogen / parasite / Plasmodium : mutates / antigenic shift / antigenic drift / antigens change ; develops resistance to, anti-malarial drugs / named drug / antibiotics ; different, species / types / strains; complex life cycle / different stages in body / two hosts ; different antigens (at different stages / in different strains) ; hides inside host cells / antigenic concealment ; difficult for immune system to reach ; eukaryotic ; many, genes / antigens; not easily recognised as foreign ; (effective) vaccine difficult to develop ; humans / animals, act as reservoirs ; symptomless carriers / remains dormant / long incubation period ; hard to eradicate / difficult to destroy all, mosquitoes ; mosquitoes develop resistance to insecticide ; cannot remove all, mosquito breeding grounds / standing water ; climate change increasing range (of mosquito) ; ref, international travel / migration ; qualified ref to economic / political / educational status of countries where malaria is common ; qualified ref to poverty of individuals; 5 max	CREDIT bites infected person CREDIT takes blood meal / feeds on blood must imply uninfected person DO NOT CREDIT injects saliva alone e.g. blood transfusions, sharing needles Note the marks are for explaining why it is difficult to eradicate rather than for describing how to eradicate DO NOT CREDIT pathogen develops immunity DO NOT CREDIT strands / 4 strains of pathogen CREDIT no vaccine / no effective vaccine DO NOT CREDIT animals transport parasite CREDIT difficulty covering all water with oil e.g. govt. / country can't develop vaccine / provide drugs / poor primary health care / lack of health education e.g. people can't afford, nets / insect repellants / insecticides / drugs	7 max
	QWC - legible text with accurate spelling, punctuation and grammar;	this mark should be relatively easy to achieve	1
		[Total: 13]	

Quest		Expected Answers	Additional Guidance	Marks
5 (a)		bone marrow ; plasma (cell) / effector (cell) ; antibody / immunoglobulin / IgG;		3
5 (b)		antigens ;		1
5 (c)	(i)	P;		1
(c)	(ii)	provide, long-term immunity / immunological memory ; remain in, body / blood / lymph nodes, after infection / AW ; produce, plasma cells / secondary response / faster response, (when re-infected) ;	DO NOT CREDIT 'to remember the antigen / pathogen'	1 max
5 (d)	(i)	no Z in blood until day, 5 / 6 ; concentration rises quickly / AW ; maximum concentration, at day 20 (A $19-21) /$ of 7.5 au (A $7-8 \underline{\mathrm{au}})$; then falls slowly ; to about 2 au at day 60 (A 59-60) ;	CREDIT rapidly / steeply / steep gradient / faster (than fall) CREDIT maximum concentration if described as 'increase followed by decrease' but must have units CREDIT '40 days after peak' instead of 60 days DO NOT CREDIT 'units' for au	3 max

Question		Expected Answers	Additional Guidance	Marks
6 (a)	increases / AW ; aerobic ; lactate / lactic acid ; liver ; debt ; (aerobic) fitness ;	 R deficit CREDIT 'dept'		
				6

2803/01 Transport - Written Paper

Question	Expected Answers					Additional Guidance	Marks
1 (b)	one mark for an advantage and one mark for a disadvantage advantage 1. more space / volume for, haemoglobin / oxygen ; 2. idea that rbcs can change shape, to fit through capillaries ; 3. thinner so short diffusion distance / AW ; 4. idea that all metabolic effort is for oxygen carriage / AW ; 5. increases surface area : volume ratio for, (increased) gas exchange / diffusion of gas / named gas ; disadvantage 1. cannot carry out, protein synthesis / replication / repair / division / mitosis / multiplication / self-replacement ; 2. short life span ;					Take the first advantage or disadvantage given advantage 1. ACCEPT "more room for" 5. surface area : volume ratio must be linked to gas exchange etc DO NOT CREDIT general statements like "large surface area to carry oxygen" disadvantage 1. DO NOT CREDIT does not carry out any other functions / ref to general metabolism unqualified / vague ideas about general cell activities / no DNA / no control / exit entry uncontrolled /	2 max
1 (c)	statement contains haemoglobin contains water contains antibodies in direct contact with muscle cells	plasma	tissue fluid \mathbf{x} \checkmark \checkmark \checkmark	lymph x \checkmark \checkmark X	cytoplasm of red blood cells $\checkmark ;$ $\checkmark \quad ;$ $\mathbf{x ;}$ $\mathbf{x} ;$	Mark by line across If no crosses included in whole table assume blanks are X If there are some crosses and some blanks assumes blanks are undecided and DO NOT CREDIT any lines with blanks DO NOT CREDIT the hybrid tick cross ACCEPT alternative symbols e.g. hyphen for a cross provided it is used consistently	4
						[Total: 10]	

Question		Expected Answers	Additional Guidance	Marks
2	(a)	1. rapid increase (in mass / weight) at first / AW ; 2. (then), slower increase / steady increase / AW ; 3. figure ref. to inflection point / AW ; 4. figure ref. at 24 hours / from inflection to end;	Regard comments about 2 cm cubes as NEUTRAL 1 \& 2 . Increases rapidly and then more slowly $=2$ marks. Faster rate then slower rate $=2$ marks. Steady increase then slower $=2$ marks. 3. ACCEPT ref to time between 3.5 - $\mathbf{5}$ hours OR \% ref between 10 - 11\% ACCEPT just over 10 4. Figure from 16.2-16.8 inclusive / $\mathbf{6 - 7 \%}$ from after inflection / percentages add up to 16.2 16.8	3 max
2	(b)	1. lower / more negative, water potential / Ψ of, potato/ cells / cubes ; ora 2. (potato) / (cells) contain, solutes / salts / ions / sugars / osmotically active substances; 3. (water enters) by osmosis ; 4. down / with water potential / Ψ gradient / described (from high to low) ; 5. through the partially permeable membrane(s) ;	1. ora $=$ higher water potential $/ \Psi$, in water. Ref to water potential / Ψ MUST be comparative 2. DO NOT CREDIT starch / nutrients / other substances, ACCEPT ref to high solute potential in cells 3. Osmosis mark must be in context with water moving in / potato gaining mass. ACCEPT water osmoses in 4. DO NOT CREDIT "along" 5. ACCEPT differentially / selectively, DO NOT CREDIT semi	3 max
2	(c)	Assume answers are for 1 cm cube unless stated as 2 cm cube. ora for 2 cm cube throughout mark scheme 1. greater surface area : volume ratio ; 2. $6: 1$ not $3: 1$; 3. greater / AW, surface / area for, diffusion / osmosis ; 4. (therefore) more / AW water enters ;	IGNORE references to diffusion distances 1. DO NOT CREDIT 1 cm cube has lower volume : surface area. Ref to surface area : volume ratio must be comparative 3. Greater could be comparative figures i.e. 48 v 24 - needs correct units cm^{2} if only figures given. 4. Only award if linked to idea of large surface area and clearly implies greater water uptake	2 max
				otal: 8]

Question		Expected Answers	Additional Guidance	Marks	
$\mathbf{3}$	(a)	A pulmonary artery ; B vena cava ;	ALLOW BOD for 'phonetic' spelling e.g. pulmonery, plumonary, polmonery vena carver, veina cava All qualifications to vena cava are neutral e.g. inferior, superior, posterior		
			$\mathbf{2}$		
$\mathbf{3}$	(b)		75 ;		
				i.e. one distance / gravity mark and another for destination 2. DO NOT CREDIT ref to cells, individual organs and tissues	
(c)	(i)1. atria pump (blood), short(er) distance / with gravity / ora for ventricles ; 2. atria pump (blood) to ventricles / ventricles pump (blood) to body / to lungs ;				
				ACCEPT correct refs to pulmonary \& systemic	$\mathbf{3}$
(c)	(ii)	right ventricle pumps, shorter distance / to lungs; ora for left ventricle			

	uestio	Expected Answers	Additional Guidance	Marks
3	(d)	X 1. atria contract / atrial systole ; 2. blood (passes) into ventricles; 3. via, atrioventricular / AW, valves ; Y 4. ventricles contract / ventricular systole ; 5. blood into, arteries / named artery or arteries ; 6. via (open), semilunar / AW, valves ; 7. atrioventricular / AW, valves shut to prevent backflow ; 8. blood (starts to) enter atria (via veins) ; may appear under \boldsymbol{Z} Z 9. relaxation / diastole, (of ventricles and atria ; 10. semilunar / AW, valves shut to prevent backflow ; may appear under \boldsymbol{X} 11. atrioventricular / AW, valves open ; 12. (passive) filling of ventricles ;	Treat electrical activity as neutral 1. ACCEPT auricles, DO NOT CREDIT ref atria push / squeeze / pump 3. ALLOW correct use of bicuspid / mitral and tricuspid. AV = atrioventricular. DO NOT CREDIT arterioventricular 4. DO NOT CREDIT ref ventricles push / squeeze / pump 6. Allow correct use of pulmonary \& aortic valve 7. Correct reason why valves shut is needed i.e. to prevent backflow. ecf from point 3. DO NOT CREDIT this point if it appears before point 4 8. DO NOT CREDIT blood 'enters heart' 9. ACCEPT cardiac / heart muscle relaxes, DO NOT CREDIT 'heart relaxes' 10. Needs reason i.e. prevent backflow - DO NOT apply ecf from point 7 12. ACCEPT rapid filling phase, DO NOT CREDIT filling of "heart"	6 max
3	(d)	QWC - clear well organised using specialist terms ; - Starts description at stage of atrial contraction - Do not award if left and right hand sides are treated sequentially or if sequence is difficult to follow or in wrong order - Uses three specialist terms in correct context - one taken from each of the rows below: Atria / atrial / atrium ventricle(s) / ventricular systole diastole atrioventricular or bicuspid / mitral \& tricuspid (NOT AV) semi lunar or aortic \& pulmonary (valves)		1

Question	Expected Answers	Additional Guidance	Marks
4 (a)	E guard cell(s); F xylem vessel (element);	F ACCEPT xylem / tracheid. DO NOT CREDIT xylem tissue	2
(b)	1. carbon dioxide absorption / oxygen release ; 2. (carbon dioxide) needed / (oxygen) produced in photosynthesis; 3. ref. to (open) stomata ; 4. large surface area in the mesophyll ; 5. ref. to low carbon dioxide concentration in atmosphere (so need large surface area) ; 6. (mesophyll) surfaces are moist ; 7. ref. to water potential / Ψ / diffusion, gradient for water vapour (out of leaf) ;	Many candidates give superb answers on transpiration here, be careful you are not awarding for part c answers here. 1. REJECT just carbon dioxide / oxygen exchange 2. IGNORE refs to respiration 3. DO NOT CREDIT ref to guard cells on their own 4. DO NOT CREDIT surface area of leaves (look for internal area)	3 max
(c)	1. transpiration / evaporation ; 2. sets up a water potential / Ψ, gradient (anywhere) ; 3. (results in) the water in the (leaf) xylem being put under tension / AW ; 4. cohesion of water molecules / hydrogen bonding between water molecules; 5. mistletoe / parasite, xylem linked to tree xylem / AW ; 6. so water pulled / drawn, up xylem / from tree / AW ; 7. mistletoe xylem increases surface area ;	1. a free standing mark - showing evaporation / transpiration is involved, DO NOT CREDIT ref to transpiration stream 2. DO NOT CREDIT water potential / Ψ, gradient in roots - location, stem or leaf needs to be implied 3. ACCEPT ref to lower hydrostatic pressure at the top or higher at bottom. DO NOT CREDIT unqualified pressure gradient 4. DO NOT CREDIT water travels by 'cohesion tension theory' 5. Ref. to xylem is needed for mark. Needs idea of physical contact between parasite xylem and tree xylem. E.g. mistletoe roots into tree xylem $=$ 0 marks. 6. DO NOT CREDIT sucks / travels	4 max
		otal: 9]	

Question	Expected Answers	Additional Guidance	Marks
$\mathbf{5}$ (a)	J ;	A ;	
	G ;		
	B ;		
			5 max

2803/03 Practical Examination

Planning Exercise

The mark scheme for the planning exercise is set out on page 4. The marking points \mathbf{A} to \mathbf{T} follow the coursework descriptors for Skill P.

Further guidance on the application of the marking points is given on page 5 .
Indicate on the plans where the marking points are met by using a tick and an appropriate letter.

There are 14 marking points for aspects of the plan and two marks for quality of written communication (QWC).

Practical Test

Pages 6 to 8 have the mark scheme for Questions 1 and 2 for the Practical Test.

Checking Point	Descriptor	The candidate
A	P.1a	Plans a suitable procedure that involves adding different concentrations of calcium chloride to milk and timing how long it takes for the milk to coagulate ;
B	P.1a	Gives a prediction about the effect of calcium ion concentration on, rate of coagulation / coagulation time ;
C	P.1b	Selects suitable apparatus for measuring volumes, observing coagulation and recording time taken to coagulate ;
D	P.3a	States that coagulation of milk involves a named change to a protein ; e.g. hydrolysis, hydrophilic and hydrophobic, soluble to insoluble, precipitation
E	P.3a	Identifies at least 2 key variables to control ; e.g. temperature, volume of milk, type of milk, volume of enzyme solution, volume of sodium citrate, concentration of enzyme, pH
F	P.3b	Decides on an appropriate number of measurements to take, minimum of five different concentrations of calcium chloride (could include 0 mol dm^{-3}) ;
G	P.3b	Decides on an appropriate range of calcium chloride solutions to use (e.g. up to $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$);
H	P.3b	Describes way of obtaining reliable results, e.g. repeating each concentration twice / carrying out three replicates;
I	P.5a	Uses appropriate scientific knowledge and understanding in developing a plan e.g. collisions between protein and calcium ions, effects of factors on activity of enzymes - temperature, substrate concentration, enzyme concentration, pH ;
J	P.5a	Uses results or observations from preliminary work or previous practical work to inform the plan ;
K	P.5a	Refers to a safety aspect - gives hazard and precaution ; e.g. calcium chloride / sodium citrate, is an irritant and appropriate precaution (goggles / gloves / lab coat) or rennin / Fromase and allergy and gloves
L*	P.5b	Gives a clear account, logically presented with accurate use of scientific vocabulary (QWC);
M	P.5b	Describes how to find the time taken for coagulation ;
N	P.7a	Uses information from two identified sources, e.g. text book, web site, article, class notes, etc.;
O*	P.7a	Uses spelling, punctuation and grammar accurately;
P	P.7b	Shows how results are to be presented in a table with all relevant units ;
Q	P.7b	Shows how rate is calculated as 1/t ;
R	P.7b	Shows how results are to be interpreted by drawing a graph of rate against concentration of calcium (chloride) ;
S	P.7b	Comments on, precision / reliability, of results ; e.g. difficulty in identifying end point / identifying and discarding anomalies / repeat to get concordant results

		P.7b T r

Comments on calcium (ions) ; e.g. interpret results to take into account presence of calcium ions in milk / discusses use of sodium citrate to remove calcium ions / calculates concentration of calcium ions in milk and concentrations tested / effect of excess sodium citrate on added calcium ions / calcium ions in tap water / calcium ions not in distilled water

Point mark up to 14 by placing letters A to T excluding L and O in the margin at appropriate points.

Then award 1 mark for each of L and \mathbf{O} (QWC).
Total: 16

Checking Point	
A	Don't forget to award this! Usual place is after the final method, but could be the prelim method if appropriate and not modified/repeated as a final method. Concentrations have to be given. R if slides dipped into, test-tubes / boiling tubes
B	Could be given for a sketch graph. Axes must be labelled. Units and values on the axes are not expected for this checking point. A 'more calcium (ions)'
C	Volumes - e.g. pipettes / syringes / burette(s) , monitoring - beaker and slide / test-tube, pipette and slide , time - stopwatch
D	This is only for a statement, not a discussion. The term hydrolysis is not important, breakage of peptide bonds / proteolysis will be fine. R liquid \rightarrow solid / curds
E	The variables only have to be identified. Look for checking point I in any elaboration/discussion of the effect of a variable on enzyme activity. \mathbf{R} unqualified 'amounts'
F	Usually given for a table of dilutions, or in the method. The usual concentrations will be 0 , $0.1,0.2,0.3 \ldots . .1 .0 \mathrm{~mol} \mathrm{dm}^{-3}$
G	As for F . Look for any that use low concentrations such as $0.001 \mathrm{~mol} \mathrm{dm}^{-3}$ - this is fine. It's fine if they treat $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ as 100%
H	Look carefully for this - usually in the method. Repeat twice is correct
1	This may be awarded with the variables or for a discussion of the coagulation process. Look for AS level material. A description of how calcium ions act as a, cofactor / activator.
J	There must be some indication that they have done something and then what they have done about it. 'It was too slow so I decided to use a water bath at $37^{\circ} \mathrm{C}$ ' is an example of the minimum acceptable answer.
K	Always look for a hazard and a precaution. CLEAPSS or equivalent as a reference can contribute to \mathbf{N}. \mathbf{R} what to do in an emergency.
L*	Lengthy, rambling, incoherent, illogical plans that you have to read two or three times don't get this one. 'Amount' used for volume may be a reason for not awarding this if no units used.
M	They are told that they can use a slide dipped into the milk. Can gain this by dipping slide into milk every 30 seconds and looking for coagulation or dip in and observe the milk on the slide until it coagulates or use a pipette to put a drop on a slide and observe.
N	The references must be cited in the plan. Look carefully for superscripts or other ways of referring to a bibliography. The references must be useful in some way - e.g. help with theory, help with safety, help with method - for example see http://www.ncbe.reading.ac.uk/ncbe/protocols/PRACBIOTECH/PDF/rennet.pdf
O*	Use your professional judgement here. Use the standardisation scripts as a guide. Ignore a few minor slips or one or two consistent errors.
P	Table must have concentration with $\mathrm{mol} \mathrm{dm}^{-3} / \%$. Look carefully at column headings and make sure units are used for all. Repeats and average must have time units. Rate does not have to be in the table, but if it is rate as $1 / \mathrm{t}$ is fine. Do not expect s^{-1} for rate. \mathbf{R} if units are in the body of the table.
Q	Accept 1/t, 1000/t or 1/t x 100, etc
R	If a graph is described then dependent variable comes first: '....draw a graph of rate of coagulation against concentration of calcium chloride' Obviously accept refs to $x /$ horizontal and $y / v e r t i c a l$. Units are not necessary. \mathbf{R} if vertical axis is time as question says rate
S	This is only for results taking not errors in using apparatus, e.g. syringes
T	Calcium ion concentration in milk is about $1.2 \mathrm{~g} \mathrm{dm}^{-3}$. Concentrations of calcium added in method could be adjusted to take into account the calcium concentration

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Expected Answers \& Marks \\
\hline 1 \& (a) \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 3 \\
\& 4 \\
\& 5 \\
\& \\
\& 6 \\
\& 7
\end{aligned}
\] \& \begin{tabular}{l}
table format with, column / row headings - lipase concentration, time taken for, rate ; \\
treat colour column as neutral \(\mathbf{R}\) split table \\
lipase concentration in, left hand column / first row ; ignore, test-tube letters / volumes \\
units in column or row headings - \% , seconds / minutes ; ecf if no concentration \\
time recorded in seconds; \\
correct trend - as concentration increases, time decreases / rate increases ; allow one anomaly \\
result for tube A recorded as no change and zero (rate) ; \\
rates calculated correctly and expressed consistently (whole numbers or same number of decimal places);
\end{tabular} \& 7 \\
\hline \& (b) \& \& put ticks and crosses on right hand side of script if time is plotted rather than rate allow ecf, but R MP3 \& \\
\hline \& \& 1
2

3
4
5

6 \& | axes correct with lipase concentration on the horizontal axis ; axes scaled appropriately using more than half the graph paper ; |
| :--- |
| \mathbf{R} if minutes used and not scaled correctly, \mathbf{R} broken axis axes titles - rate and concentration, \%; \mathbf{R} if time points plotted accurately; if rate plotted line starts at the origin; \mathbf{R} if broken axis \mathbf{A} not at origin if time plotted appropriate line of best fit ; \mathbf{R} if extends beyond highest concentration / sketchy line | \& 6

\hline \& (c) \& \& mark (c) and (d) to max 11 \&

\hline \& \& \[
$$
\begin{aligned}
& 1 \\
& \\
& 2 \\
& 3 \\
& 4
\end{aligned}
$$

\] \& | increase in, rate / activity, with increase in concentration of lipase ; |
| :--- |
| A rate is proportional to enzyme concentration \mathbf{R} correlation unqualified |
| comparative data quote ; \% and rate/time at two different concentrations ref to shape, e.g. straight line / exponential / plateau; ref to anomalous result(s) ; A 'no anomalous results' | \&

\hline \& \& 5
6
7
8

9 \& | lipid / triglyceride / fat, is substrate ; |
| :--- |
| more collisions between, lipase / enzyme, and substrate ; ora |
| ref to active sites ; |
| ref to enzyme-substrate complexes ; |
| enzyme concentration is limiting factor / saturation of active sites ; |
| if graph has a plateau |
| substrate concentration is limiting at high(est) concentrations of lipase ; |
| AVP ; | \&

\hline \& (d) \& \[
$$
\begin{aligned}
& 12 \\
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18
\end{aligned}
$$

\] \& | decrease in pH / increase in acidity / decrease in alkalinity ; increase in, concentration of hydrogen ions / [$\left.\mathrm{H}^{\ddagger}\right]$; |
| :--- |
| pH decreases below 8.0 to 10.0 or any pH in between; hydrolysis / breakage, of ester bonds ; |
| release of fatty acids (and glycerol) ; R if not linked dissociation / ionisation, of fatty acids; |
| AVP ; e.g. (fatty acids) neutralise sodium carbonate | \& \[

$$
\begin{gathered}
11 \\
\max \\
\hline
\end{gathered}
$$
\]

\hline
\end{tabular}

(e)	1 2 3 4 4 5 6 6 	idea that end point difficult to judge ; so that end point may not have been the same in each case ; use colour standard; R colorimeter stated problem with timing ; note that stopwatch should be started before mixing e.g. times all overestimates as started stop watch before adding lipase rates therefore underestimates ; ref to improved timing method ; \mathbf{R} have someone else to start the stopwatch accept way to slow down the reaction e.g. lower temperature / more milk only one set of results / no repeats ; A 'do repeats' repeat, twice / more than twice ; calculate, means / standard deviations ; must be linked to MP $7 / 8$ only 6 / AW, lipase concentrations ; wider range / use greater than 5%; more intermediates / AW ; ref to anomalous results ; stated problem with syringe(s) ; A air bubbles / accuracy explained \mathbf{R} liquid in nozzle use, graduated pipette(s) / burette / micropipette ; cross contamination from bung ; use separate bungs / clean the bung / AW ; lipase / tubes 1-6, not in water bath; lipase / tubes 1-6, in water bath to, equilibrate / acclimatise / AW ; test-tube of milk removed from water bath before adding lipase ; ora problem with maintaining constant temperature ; rate of reaction / activity, depends on temperature ; use thermostatically-controlled water bath ; ref to drops of phenolphthalein being inaccurate / AW ; use set volume of phenolphthalein ; colour changes over a range of pH ; use, pH meter / pH probe and data logger / more sensitive indicator ; record time to reach constant pH ; AVP ; e.g. percentage error of volume or timing / lipase left in test-tube / not mixed throughout AVP ; e.g. improvement linked to disadvantage - invert at intervals	$\begin{gathered} 10 \\ \max \end{gathered}$
			al: 30]

2804 Central concepts

	stio		Expected Answers	Marks
2	(a)	(i)	T; R; V; W; S; only mark if one letter in each box	5
		(ii)	E-centromere ; F-chromatid / locus ; G-chromosome ;	3
		(iii)	centrioles absent ; aster absent ; involved in spore formation in plants and gamete formation in animals no, telophase 1 / nuclear membrane formation in telophase 1 ;	1 max
		(iv)	3 ;	1
	(b)	$\begin{gathered} 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \\ \hline 12 \\ 13 \\ 14 \\ \\ 15 \end{gathered}$	crossing over ; (between), chromatids / homologous chromosomes ; A within bivalent prophase 1 ; (linked to crossing over / description of crossing over) ref to chiasma(ta) ; (results in) new combinations of alleles; A recombinants chromosome mutation ; independent / random, assortment ; bivalents / chromosomes; (linked to 7) metaphase 1 ; (linked to 7) (independent assortment) of chromatids ; metaphase 2 ; (linked to 10) 6 max from points 1 to 11 and 15 gametes genetically different / AW ; random fusion of gametes; random mating (within population) ; AVP ; e.g. linked genes separated during crossing over, named chromosome mutation annotated diagrams are acceptable	7 max
			QWC - clear well organised using specialist terms Need to use four of the following: crossing over, chiasma(ta), allele, mutation, bivalent, independent / random assortment, gametes.	1
				otal: 18]

	stio		Expected Answers	Marks
3	(a)	(i)	ATP ; reduced NADP / NADPH / NADPH ${ }_{2}$;	2
		(ii)	D; G ; either order	2
		(iii)	respired / used in glycolysis ; A ATP production, energy source (converted to) polysaccharide / named polysaccharide ; A storage carbohydrate (converted to) disaccharide /named disaccharide ; (converted to) pentose / named pentose sugar ; (converted to) lipid ; A fatty acid, glycerol (converted to) amino acids / protein ; (converted to) nucleic acids ; Accept two named polysacchrides, disaccharides or pentose sugars for 2 marks.	2 max
		(iv)	Stroma ; R stoma	1
		(v)	ribulose bisphosphate increases and glycerate 3-phosphate falls ; (less) carbon dioxide combining with, ribulose bisphosphate / Rubisco ;	2
	(b)		light intensity ; wavelength of light; A colour of light carbon dioxide (concentration) ; temperature ; water ; mineral ions / named mineral ion ; \mathbf{R} nutrients	3 max
	(c)	$\begin{gathered} \hline 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ \\ \hline \end{gathered}$	increased temperature ; (must be linked to explanation) rate of transpiration increases ; A description of transpiration increased rate of evaporation from soil ; A reduced, water availability / supply ref to ABA / stress hormone ; stomatal closure ; rate of enzyme controlled reactions increases ; rate of respiration increasing ; more carbon dioxide produced in leaf ; used in photosynthesis ; mp 9 must be linked to $m p 8$ A refs to C 4 metabolism, carbon dioxide released in leaf -for two marks photosynthetic enzymes not working at optimum ; ignore denature increased light intensity ; (must be linked to mp12 or mp13) damage to chlorophyll / chloroplasts ; movement of chloroplasts ; lower rate of photosynthesis ; (must be linked to mp12 or 13)	4 max
				tal: 16]

	esti		Expected Answers	Marks
4	(a)	D1 D2 D3 D4 D5 D6 D7 D8 D9 E10 E11 E12 E13 E14 E15 E16 E17 E18	increasing pressure, increases / less negative / PD ; (at electrode 1/2/electrodes) light or medium pressure, smaller change in PD / at electrode 2 ; ref to generator / receptor potential ; ref to action potential in,axon / neurone / electrode 2, at heavy pressure ; peaks in PD at electrode 2 follows electrode1; peaks are delayed as pressure increases; data quote for D1 (within range -50 mV to -30 mV) / data quote for D2(within range -55 mV to -45 mV) ; data quote for threshold value $(-40 \mathrm{mV}$ to $-30 \mathrm{mV})$ or action potential $(+45 \mathrm{mV}$ to $+55 \mathrm{mV})$; ref to, hyperpolarisation / -65 mV to -70 mV in electrode 2 with heavy pressure ; max 4 for description. Only penalise lack of units once. pressure / stimulus, causes deformation / AW (of Pacinian corpuscle) ; increased permeability to sodium ions / sodium channels open ; sodium (ions) move in (corpuscle / receptor / axon) ; causes depolarisation / AW (i.e. from -ve to +ve); increasing pressure more sodium (ion voltage gated) channels open ; ref to threshold value / AW ; sodium (ions) move along, axon / sensory neurone; A. ref to local circuit ; ref to repolarisation; AVP ; e.g. ref to role of potassium (ion gated) channels / ref to sodium potassium pump/ ref to all or none principle.	8 max
			QWC - legible text with accurate spelling, punctuation and grammar;	1
	(b)	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ \\ 8 \\ 9 \\ 10 \end{gathered}$	no uptake of calcium (ions) ; into, presynaptic membrane / synaptic bulb ; no, movement / fusion of synaptic vesicles, to / with presynaptic membrane ; no, exocytosis / release of, neurotransmitter / named neurotransmitter ; no diffusion / movement (of neurotransmitter) across synaptic cleft ; no binding to receptor on postsynaptic membrane / sarcolemma; no depolarisation of, postsynaptic membrane / sarcolemma; A ref to Na ions / channels no, action potential / impulses / depolarisation of t-tubule ; brain does not detect pain (in humans) ; no muscle contraction (in fish) ; ora throughout for candidates who state what normally happens and then says this will not happen with the drug. Max 4 if do not mention that events will not happen.	5 max
				al: 14]

Question			Expected Answers		Marks
5	(a)	(i)		$\frac{0.6}{11.2} \times 100$ or $\frac{0.8}{9.4} \times 100$; or $100-(10.6 / 11.2 \mathrm{X100})$ or $100-(8.6 . / 9.4 \times 100)$; beak length: 5.4% (A 5.36\%); beak depth: 8.5\% (A 8.51\%) ; If no working shown $\mathbf{2}$ marks for one correct answer $\mathbf{3}$ marks for two correct answers.	3
		(ii)		food / seed, shortage / AW ; A competition for food competition from large ground finch / interspecific competition ; R competition unqualified	2
		(iii)		no, competition from large ground finch / interspecific competition ; A no large ground finches present. seed size larger ; A size / hardness, of seeds has changed	1 max
	(iv)	$\begin{gathered} \hline 1 \\ 2 \\ \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$		variation (in beak size); those with large beaks in competition with large ground finch; A struggle for survival idea medium ground finch out competed ; smaller size beaks for opening small seeds ; less (interspecific) competition for small seeds ; birds with small beaks more likely to survive ; reproduce / AW ; pass on, small beak / favourable, alleles ; A ora over a number of generations; increase in frequency, small beak / favourable alleles; A ora	5 max
	(b)			disagree (no mark on own) change in phenotypic feature is taking place; A beaks have changed directional selection taking place;	1 max
					tal: 12]

Question			Expected Answers	Marks
6	(a)	(i)	predator: prey;	1
	(ii)	$\begin{gathered} \text { D1 } \\ \text { D2 } \\ \text { D3 } \\ \text { D4 } \\ \text { D5 } \\ \text { D6 } \\ \text { D7 } \\ \text { D8 } \\ \\ \text { E9 } \\ \text { E10 } \\ \text { E11 } \\ \text { E12 } \\ \text { E13 } \end{gathered}$	1970 - moose population 1000 ; 1970 - wolf population 15 ; moose population increases until 1975 / peaks at 1500 ; wolf population increases until 1980 / peaks at 40 ; wolf peak / fall, after moose peak / fall ; moose population declines to 850 ; coincides with peak in wolf population (in 1980) ; linked to D6 1985-moose population 1000 and wolf population 24 ; 3 max for description moose population increases due to less wolf predation / ora ; shortage of food (moose) causes fall in wolf population / ora ; ref. to intraspecific competition ; ref. to other factors causing population change ; length of reproductive cycle idea to explain lag in population peaks ;	4 max
	(b)		reduction in fertility ; less, variability of genome / heterozygosity / reduced gene pool, ora ; more chance of harmful recessive alleles being expressed ; greater incidence of genetic diseases ; less able to cope with environmental change/ AW ;	2 max
	(c)	(i)	less food / vegetation available; fat reserves depleted ; fat reserves act as insulation ; difficult to lose heat / could over-heat ; less food eaten / lack of appetite ; only those with thin fat reserves survive overheating; cooler summers stimulate fat deposition ;	2 max
		(ii)	moose weakened by parasites / poorly insulated ; unable to cope with winter conditions / AW ; easy prey for wolves / more food for wolf population ; less intraspecific competition ; successful reproduction more of young survive ;	3 max
				tal: 12]

2805/01 Growth, Development and Reproduction

| | (iii) | exact nutritional requirements / AW ;
 provides antibodies / immunity / colostrum ;
 sterile / infection less likely ;
 allergies less likely ;
 AVP ; e.g. close emotional bonding | |
| :--- | :--- | :--- | :--- | :--- |
| | | | 1 max |
| | | | [Total: 14] |

	estio		Expected Answers	Marks
2	(a)	(i)	physical protection / shock absorber (for foetus) ; allows, movement / muscle to develop / bone to develop ; urinates into fluid ; swallows / ingests fluid / swallowing reflex ; prevents fluctuations in temperature ;	2 max
		(ii)	dilates / widens ; allows passage of baby / AW ;	1 max
		(iii)	chorionic villi ; microvilli ; (produce a) large surface area ; short distance between two blood supplies ; short diffusion pathway ; R fast blood spaces filled with maternal blood; AVP ; e.g. ref to countercurrent blood flow	3 max
		(iv)	assume arteries described unless told otherwise less oxygen / deoxygenated blood ; more carbon dioxide ; more urea / nitrogenous waste ; less glucose / named nutrient; AVP;	2 max
	(b)	(i)	$\frac{3240-2910}{3240} \times 100$ correct method wrong answer 1 max not to one decimal place 1 max Answer $=10.2(\%) ; ;$	2 max
		(ii)	as PP02 declines / altitude increases, birth mass declines ; ora ref. to positive correlation / negative correlation / directly proportional / indirectly proportional (in context) ; correct ref. to comparative figs from table (four figures) ; less / low, oxyhaemoglobin, in maternal blood ; less / low, oxygen, in uterine vein / to placenta ; less oxygen, to foetal haemoglobin ; less oxygen for respiration production of ATP (in foetus) ; less energy for growth / growth processes e.g. protein synthesis ; AVP;	5 max
		(iii)	diet / nutrition / named nutrient, in mother ; single or multiple pregnancy ; length of pregnancy ; \mathbf{R} refs. to premature smoking ; alcohol consumption ; AVP ; e.g. health care / advice, during pregnancy / genetics / size of mother / disease in mother / ref to efficiency of placenta / multiple birth	2 max
				al: 17]

	esti		Expected Answers	Marks
3	(a)		grow / use, large number of seeds / plants ; take sample / at least 10 ; remove all growth medium from roots / AW ; dry / heat, in oven / incubator ; repeat until no change in mass / weight ; ensure conditions identical / example of condition kept the same ; take measurements at, regular / stated, intervals ; repeat and calculate mean; AVP ; e.g. sow in nitrogen neutral medium(AW) / vermiculite / perlite / hydroponics details of suitable method of applying different concs of nitrate absolute / actual, growth curve) ; plot dry mass (y axis) against time (x axis) ; absolute growth rate curve, is change in mass / gain in mass in set period, against time ; AW relative growth rate curve, plus correct method of calculation ;	7 max
			QWC - legible text with accurate spelling, punctuation and grammar ;	1
	(b)		X testa ; Y cotyledon ;	2
	(c)		does not kill / destroy plant ; fewer seeds needed; follow growth of same plant ; AVP;	1 max
	(d)	(i)	$\frac{62-19}{2} ;$ correct figures $+/-1=1$ not to one decimal place 1 max Answer $=21.5 ; ;$	2

\begin{tabular}{|c|c|c|c|c|}
\hline \& (ii)
1
2
2
3

4
4
5
6
7
8
9
10

11 \& \begin{tabular}{l}
giberrellin concentration increases, then decreases / AW ; length of hypocotyls increases slowly, then rapidly, then plateaus correct ref to figs to illustrate trends using both axes (four figs) ;

Explanation

plant growth regulator ; increases length of the hypocotyls ; promotes cell elongation; hypocotyls stops growing because, giberrellin conc falls / ora; stimulates enzyme / amylase production ; involved in gene switching; in aleurone layer ;

length of hypocotyls reaches max as, cotyledons become green / photosynthesis begins; ref to delay in growth response to giberrellin : AVP ; e.g. uptake of water stimulates gibberellin production breaks dormancy / begins germination reasonable exlanation for fall in conc of giberellin

 \&

AW ;

$\max 4$
\end{tabular} \& 5 max

\hline \& \& \& \&

\hline \& \& \& \&

\hline
\end{tabular}

Question			Expected Answers	Marks
5	(a)		mark one method only. If two methods given mark both and award highest mark. allow once (in either method) mitosis / genetically identical / clone ; spores / conidia; at tips of (vertical) hyphae ; conidiophores / sporangiophores; light / small / numerous, for dispersal ; Or budding ; occurs in yeast ; grow attached to / on side of, parent cell ; break off to form new individual ; R buds off	3 max
	(b)	(i)	anaerobic respiration / respiration in absence of oxygen ; pyruvate to ethanal ; decarboxylation / removal of carbon dioxide ; R CO2 given off ethanal to ethanol ; 1 mark for pyruvate to ethanol ethanal is hydrogen acceptor ; AVP ; e.g. ref. to NADH / NAD(reduced), providing H (ethanal to ethanol)	3 max
		(ii)	(ethanol) toxic / poisonous (to yeast) ; disrupts membranes / AW ; denaturation of enzymes ; change in, shape / tertiary structure, of active site ; slower reaction rate ; AVP ; e.g. ref. enzyme inhibition / ref. end - point inhibition	2 max

Question			Expected Answers	Marks
6	(a)		follicles; thyroglobulin ; endocytosis ; hydrolysis;	4
	(b)	(i)	```thyrotrophin / thyrotrophic releasing hormone / factor / TRH / TRF ; R thyroxine anterior pituitary (gland); thyroid stimulating hormone / TSH;```	3
		(ii)	decrease in temperature ; higher centres of the brain ; negative feedback / fall in thyroxine ; AVP ;	2 max
		(iii)	switches on / increases, transcription (of mRNA); A causes / helps more increases, protein / enzyme synthesis; \mathbf{R} allows / involved in increases, respiration ; stimulates growth / AW ; development of the skeletal system ; stimulates, brain development ; AVP; e.g. hormone binds to receptor protein on the nucleus Inhibits secretion of TRH	2 max
				tal: 11]

2805/02 Applications of Genetics

	estio		Expected Answers	Marks
3	(a)		outbreeding increases reproductive success; outbreeding increases mean number of live offspring ORA ; comparative figures ; [two of 39, 48, 64]or NN approx double BB outbreeding decreases percentage of females aborting brood ORA ; comparative figure ; [two of $40,20,10] \mathrm{R}$ wrong units	3 max
	(b)		outbreeding increases genetic diversity of offspring ; increases heterozygosity / reduces homozygosity ; reduces expression of deleterious recessive alleles / AW ; reduces / avoids, inbreeding depression ; ref. hybrid vigor / increases viability ;	3 max
	(c)		for expression of desired recessive allele / AW ; to get (desired) homozygosity ; to produce pure-breeding variety ; because so few individuals exist ; AVP ; e.g. production of F_{1} hybrids/mass selection	1 max
	(d)		shows relationships ; identifies parent(s) ; similar bands show genetic similarity / AW ; most diverse chosen to breed / most similar not bred / AW ;	2 max
	(e)	(i)	to produce desirable change in phenotype/characteristic(s)/traits ; for benefit of humans; by artificial selection; of parents showing desirable traits ; to greater extent than other individuals;	2 max
		(ii)	selective breeding tends to reduce genetic diversity ; captive breeding needs to maintain (maximum) genetic diversity/stop inbreeding ; selective breeding humans do the choosing/choose parents on grounds of particular phenotype/benefit to humans; captive breeding parents should not be chosen for particular phenotype/ or random ; weak / unattractive, individuals may have desirable alleles ; AVP ; idea that breeding should be for benefit of individual/population	4 max
			[Total:	15]

	estio		Expected Answers	Marks
4	(a)		allows AI; store of alleles ; sperm from desirable male can be used anywhere (in the world) ; (a) removes cost of transport ; after death of male ; quickly available ; tested for, genetic disease / sex; reduced risk /stress/cost of keeping male with herd ; allows use of different males; may reduce inbreeding short-term / AW ;	4 max
	(b)	(i)	cooled at $1^{\circ} \mathrm{C} \mathrm{min}^{-1}$; thawed, slowly/ at $1^{\circ} \mathrm{C} \mathrm{min}$;	2
		(ii)	crystals grow ; A expand break/pierce plasma (cell surface) membrane ; R just damage break, intracellular membranes / membraneous organelles; e.g. of intracellular membrane / organelle; ref. to osmotic effects ;	2 max
		(iii)	```slow thaw allows ice crystals to grow ; when sperm cooled rapidly; most ice damage rapid cool slow thaw ; ora least damage fast cool, fast thaw no ice crystals present after slow cooling; so difference caused by other factor(s); e.g. volume / water uptake / water potential / osmosis / AW ; ref. figs.;```	3 max
	(c)		does a couple have a right to a child ; should we meddle in fertility/genetic disease ; $\mathrm{Al}(\mathrm{D})$ no longer anonymous (UK)/child has right to know who father is; problem if child (when old enough), seeks / finds, biological father; apparent father may be rejected ; $\mathrm{Al}(\mathrm{D})$ child not offspring of apparent father who may not bond with child/third party into relationship ; idea of unethical selection of donor sperm for particular characteristics; AVP ; ; e.g. lesbian/gay couples, single women ,religious objections \mathbf{R} biological problems- inbreeding, genetic disease of donor, ignore 'playing God' / unnatural	4 max
			[Total:	15]

Question			Expected Answers involuntary muscle movement / chorea ; (progressive) mental deterioration ; loss of brain cells ; increase in size of brain ventricles ; onset commonly middle age; A 35-50 AVP ; [rigidity, irritability, moodiness, depression, anti-social behaviour, facial twitching or grimacing, writhing of fingers, dancing gait, rapid eye movements, weight loss]	Marks
6	(a)			4 max
	(b)		autosomal / not sex-linked, because approximately equal numbers of male (5) and female (4) sufferers ; appears in every generation / no alternate generation pattern ; male passes trait to son ; dominant / cannot be recessive, because only inherited from sufferer ; ORA approximately equal numbers of sufferers and non-sufferers in each generation/ora expect smaller numbers if recessive ; e.g. 2 sufferers and 2 non-sufferers in offspring of sufferers in generation 2 ; e.g. 3 sufferers and 2 non-sufferers in offspring of sufferers in generation 3 ;	3 max
	(c)	(i)	cuts DNA into, pieces / fragments / AW ; at specific sites ; close to, but not in stutter ; detail of site ; [4-6 base pairs, palindromic]	3 max
		(ii)	negatively charged ; detail ; [phosphate groups] attracted to anode ; smaller fragments travel further (towards anode) / ora ; smaller fragments have less impedance / AW / ora ;	3 max
	(d)	(i)	inherited from three different individuals/ each parent (unaffected parents of A, B and C) ;	1
		(ii)	length of stutter increases in each generation/ C longer than A/different sizes of stutter ;	1
			[Total:	15]

2805/03 Environmental Biology

Question			Expected Answers	Marks
1	(a)		release of chlorine / bromine / CFC's or HFC's chemicals ; idea that these build up in upper atmosphere / AW ; ref to photochemical reaction releasing free radicals / AW ; free radicals split ozone to oxygen ; detail of reaction e.g. $\mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2} / \mathrm{ClO}+0 \rightarrow \mathrm{Cl}+\mathrm{O}_{2}$; idea of free radicals recycled; ref to cold temperatures leading to accumulation of CFC's / AW ;	$\max 3$
	(b)		ban / reduce, use of, chlorine-based / bromine-based, propellants ; use of non-ozone destroying alternatives (a named example e.g. HFC); countries signing up to international / named, protocols (to reduce emissions) ; AVP ; e.g. better disposal of fridges / change in aerosol propellant	$\max 1$
	(c)	(i)	(visible blue / red light) has insufficient energy to break C-C bonds ; ref to energy data for visible blue / red light; \mathbf{R} if no units AVP; e.g. repairable damage if occurs	$\max 2$
	(c)	(ii)	ozone loss allows uv rays to reach earth's surface / ora ; ref. to uv light has 400 kJ of energy per mole of photon / has energy to break C-C bonds / AW ; DNA has many C-C bonds ; uv light can disrupt DNA leading to mutations ; mutations can lead to, cancer / named cancer ; \mathbf{R} cancer if not linked to mutation AVP ; e.g. idea of unrepairable damage / effect on algal metabolism / effect on young amphibians / cataracts	$\max 4$
				tal: 10]

	stio		Expected Answers	Marks
2	(a)		$(8.64+8.64)=17.28$	$\max 1$
	(b)		```ecf throughout hypothesis not supported / AW ; ref to 1 df ; chi-squared result compared to table at 0.05P (look at annotated table); \(\mathbf{R}\) probabilities of 0.10 correct ref to probability due to chance is too small ;```	$\max 3$
	(c)		larger the area the more species counted; comparative data quote between 2 points ; max species count with area of 0.65 to $0.7 \mathrm{~m}^{2} / \mathrm{no}$ increase after 0.65 to $0.7 \mathrm{~m}^{2}$; R if no units included most change occurs with smallest quadrats / steep increase at start / AW ;	$\max 3$
	(d)	(i)	deflected succession / plagioclimax ;	$\max 1$
		(ii)	burning ; herbicide application ; cutting / mowing ; (visitor) trampling ; AVP ; e.g. allowing access to site to military vehicles / hand-weeding	$\max 2$
		(iii)	disturbance creates new niches / AW ; idea that these (niches) provide opportunity for new species / AW ; idea that there may be more habitats; idea of (possibility of) more food chains ; leading to increased (complexity) of food web ; reduction in, interspecific competition / competition between species / AW; grazers may remove dominant species / AW ; greater nutrient / light / space for other species ; AVP ; e.g. possibility of faecal matter alters nutrient status linked to soil fertility / AW AVP ; e.g. grazing prevents climax community being reached so increasing biodiversity / AW all answers could be a possible ora	$\max 4$
			[Total:	14]

	esti		Expected Answers	Marks
4	(a)		farmers required to adopt traditional approaches to agriculture / AW incentives to, adopt / adhere to, govt guidelines / financial cost or b farmer ; reduced use of fertilisers ; increased maintenance of hedgerows; reduced pesticides; AVP ; e.g. do not drain the land	$\max 2$
	(b)		nitrates are (highly) soluble ; leads to leaching / AW ; leading to (increased chance) eutrophication ; 2 marks for ref detail of eutrophication ; AVP; e.g. ref human health problem (s) e.g. blue-baby syndrome	$\max 3$
	(c)		SSSI's are regulated by laws / more rigid legal framework ; ora SSSI's protect small areas ; ora SSSI may be given for 1 or few species - ESA's given for broader protection of ecosystem / AW ; SSSI's need to be actively maintained / AW ; AVP ; e.g. SSSI's have research value	$\max 2$
	(d)		Any two from: CITES ; fox hunting ban (with hounds); nitrate vulnerable zone ; heritage coast status; farm woodland scheme; set-aside ; Area of Outstanding Natural Beauty / or abbreviations ; National Park ; Local Nature reserves ; R NNR's The Wildlife and Countryside Act (1981) ; tree preservation orders ; Protection of Badger Act (1992) ; fisheries conservation policy; prevention of collection of birds eggs ; collection of orchids; AVP :	$\max 2$
	(e)		purchases / manage reserves; fund-raise / membership funds; raise public awareness / campaign / education ; provide evidence for prosecution ; lobby parliament ; challenge developments ; carry out research / surveys ; AVP ; e.g. specific detail relating to one such example	$\max 4$

	(f)	$\mathbf{1}$	need to remove wild birds / increasing risk of extinction if fails ;		
	$\mathbf{2}$	failure / lower breeding rate in captivity / AW ;			
	$\mathbf{3}$	inbreeding / inbreeding depression ;			
	$\mathbf{4}$	increase chance of deleterious / harmful alleles ;			
	$\mathbf{5}$	more prone to disease ; R if not linked to points 3 or 4			
	$\mathbf{6}$	reasons for decline may still be there / AW ;			
	$\mathbf{7}$	captive bred animals may not readjust to wild ; e.g. feeding /			
	$\mathbf{8}$	nesting problems	AVP ; e.g. stress		
			[Total:	18]	

2805/04 Microbiology and Biotechnology

Question			Expected Answers		Marks
1	(a)		(cheap cuts of meat) tough / chewy / fibrous bromelain / enzyme, (in pineapple) enters hydrolytic / hydrolase / proteolytic / proteas (breakdown of) fibrous proteins / collagen / left for time to allow, enzyme action / diges occur ; cooking, stops enzyme action / denatures AVP; e.g. pineapple adds flavour polypeptides / proteins, to pep release of, amino acids / peptid breakdown of peptide bonds ref. to texture obtained if left fo long, too soft) makes cooking time shorter ref. to improved quality of mea	AW ; R not tender netrates, meat ; AW digestive; astin; A connective tissue / hydrolysis / breakdown, to yme ; / amino acids adds flavour ferent lengths of time (too \mathbf{R} more tender	4 max
	(b)	(i)	mycoprotein / Quorn ${ }^{\text {TM }}$;		1
		(ii)	air lift (loop) fermenter;		1
		(iii)	wort ;		1
		(iv)	rennin / rennet / chymosin ; \mathbf{R} renin		1
		(v)	ethanal / acetaldehyde ; R ethanol		1
					otal: 9]

Question			Expected Answers	Marks
2	(a)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	binary fission ; increase in, size / volume / length ; replication of plasmids ; DNA replication (of nuclear zone) ; semi-conservative ; attachment to, mesosome / cell membrane ; cell / cell membrane, lengthening (further) / AW ; mesosomes / attachment points on membrane / AW, move apart ; separating DNA molecules / AW ; septum forming ; cell wall, laid down / forming ; further detail e.g. murein / peptidoglycan, molecules added, cross-links formed ; two, identical / same-sized, cells produced ; AVP ; AVP ; e.g. increase in number / replication / synthesis, of organelles / ribosomes ref. to copy number of plasmids plasmid replication independent of nuclear zone replication / AW further detail semi-conservative replication membrane invaginates ref. to cytoplasmic division followed by cells separating resistance genes passed from original cell to new cells	$\max 7$
			QWC - legible text with accurate spelling, punctuation and grammar	1

Questio	Expected Answers	Marks
(b)	useful in genetic, engineering / modification ; A recombinant DNA technology as a vector I description ; good vector for, bacterial / yeast hosts ; named example ; e.g. Ti plasmid and herbicide resistance gene good for gene transfer to, eukaryotes / higher organisms (e.g. herbicide resistance); description of use; e.g. with Agrobacterium tumefaciens harm unable to give, tetracycline / streptomycin / (relevant) antibiotic, to treat diseases ; (hence) spread of (infectious) diseases ; ref. to transfer of plasmids to other bacteria ; spread resistance / AW ; ref. multiple resistance ; A named example may possess unknown genes that code for 'harmful' product ;	4 max
(c)	assume answers are for mitosis unless otherwise stated ref. chromosomes becoming visible ; nuclear envelope, disassembling / reforming ; nucleolus, disappearing / reappearing ; spindle, presence / involvement ; centrioles present / involvement; chromatids separating / centromeres dividing ; cytokinesis / description ;	3 max
		tal: 15

	estio		Expected Answers	Marks
3	(a)	(i)	same, concentration solution / water potential inside (cells), as outside / AW ; avoids osmotic problems / AW ; ref. to consequence if not equal concentrations e.g. lysis / shriveling ;	
		(ii)	avoids clumping of cells; ora ref. to uneven distribution affecting count ; ora cells, easily damaged / fragile, so gently mixing ; AW	
		(iii)	allows cells, to settle (to bottom of chamber) / stop moving ; allows easier focusing (to count) ; ora idea of prevents counting errors if still moving; ora	4 max
	(b)	$\begin{aligned} & \hline \text { two I } \\ & 350 \\ & \text { one } \\ & \text { one } \\ & \\ & \text { exan } \\ & 14 \text { pI } \\ & 3501 \\ & 3500 \end{aligned}$	marks for correct answer $000 / 3.5 \times 10^{6}$; ; mark if incorrect wrong count so ecf mark if working correct or to $1 \mathrm{~mm}^{3}$ mple of correct working protoplasts in $0.2 \times 0.2 \times 0.1 \mathrm{~mm}^{3} / 14 \times 25$ protoplasts in $1 \times 1 \times 0.1 \mathrm{~mm}^{3}$ protoplasts in $0.1 \mathrm{~mm}^{3}$ protoplasts in $1 \mathrm{~mm}^{3}$ (incorrect count of 12 gives 3000 at this stage)	2
	(c)	cultu plan callu subd provi subd steri AVP	ure / growth / nutrient / M \& S, medium ; A plant growth substances growth regulator / auxin / cytokinin ; us culture ; divide ; vide light ; divide plantlets; le soil ; e.g. ref. to aseptic technique ref. to auxin / cytokinin ratio root / shoot, growth (from callus)	4 max
	(d)		```one relevant advantage e.g. er to manipulate genetically / AW ; s-free ; er for cell fusion ; cribed example e.g. potato eyes orientated correctly in culture medium ;```	1 max

3 cont.		Expected Answers	Marks
	1 mark for any valid variable 1 mark for suitable justification - also give credit if realise that the different preparations may have different optima / operating conditions	e.g. volume / mass / number, of cells (at start) ; number at start will influence number of possible protoplasts that can be formed ; (incubation) temperature ; temperature affects enzyme action ; enzyme, volume / concentration ; as enzyme concentration increases, may increase number of protoplasts formed ; sample size / volume counted in sample ; will affect number of protoplasts seen ; pH ; pH affects enzyme action ; age / condition, of fungal cells ; older cells more prone to autolysis / AW ; ora	2 max

	estio		Expected Answers	Marks
4	(a)	(i)	(mixture of) ethanol / ethyl alcohol, and, petrol / gasoline ; treat $\%$ as neutral (Brazil $=22 \%$ and 78%; elsewhere 10% and 90%)	1
		(ii)	any one relevant advantage e.g. (combustion leads to) lower amounts, nitrogen oxide / CO ; no / reduced, sulphurous oxides ; A reduced acid rain any one health link for above ; partly / fully, renewable; A renewable reduces need for fossil fuels; reduced cost, qualified ; increased employment e.g. for sugar crop growing ; lowers / no, contribution to greenhouse effect ; (CO_{2} emitted cancelled by crops that use CO_{2}) A carbon neutral lower volatile organic compounds;	1 max
		(iii)	more productive ; continuous ethanol removal / lower concentration ethanol reduces inhibition of yeast growth ; reduced, cleaning time / less time spent in non-production ; less frequent sterilisation required; smaller space required / smaller fermenter ; maintains culture in, a log / exponential, phase ; downstream processing easier / AW ;	2 max
	(b)		immobilised - any valid reason for one mark, suitably qualified for second mark e.g. allow reference to more economical as qualification for reason cells are separated from each other ; giving higher surface area; or more even rate of ethanol production ; cells not lost in product removal ; so cells easily recovered ; cells held in matrix ; so cells can be reused ; no / fewer, cells in product ; so easier downstream processing / easier to separate product ; greater protection from extremes / AW ; A example described so improved stability ; may give a longer shelf-life of cells; less need for frequent re-stocking ; or can use a smaller, volume / number, of cells ;	2 max

Qu. 4 c	Expected Answers	Marks
(c)	one mark for relevant favourable feature second mark for reasonable explanation third mark for comparable data quote J can use the largest range of (respiratory) substrates ; greater choice of feedstock / feedstock to suit area or country ; AW data comparison ; or K highest ability to flocculate ; easier to remove cells at end of fermentation ; alternative for above able to ferment at lowest temperature ; cost saving for heating fermenter ; data comparison ; or L able to ferment at the highest temperature ; more tolerant to extremes of temperature ; data comparison ; or M highest tolerance to ethanol ; able to survive and produce more ethanol ; data comparison ; AVP ; e.g. additional reasonable explanation use of data comparing other features to support choice	3 max
(d)	any one valid unable to scale-up ; more, side / by, products ; greater costs involved; more prone to mutation ; unable to operate in continuous fermentation; problems with immobilisation ;	1 max

Qu. 4 c	ont.	Expected Answers	Marks
(e)	(i)	assume answers refer to oleic acid unless stated longer / 18 to $16 \mathrm{C} /$ more CH_{2} groups ; unsaturated / double, bond;	2
	(ii)	oleic acid, is a fatty acid / possesses, fatty acid / hydrocarbon chains; support fatty acid tail / hydrocarbon chain, is hydrophobic ; longer tails gives, more hydrophobic interaction / increased hydrophobic core / greater repulsion of water molecules ; greater membrane stability / AW ; fewer problems with ethanol as solvent (affecting membrane); increase in oleic / replacement of palmitic, correlates with increased, tolerance / ethanol concentrations ; increased distance reduces rate of entry of ethanol into cell ; not support double bond gives 'kink' in tail / AW ; phospholipids / fatty acid tails (of adjacent phospholipids), further apart / increases fluidity; gives more 'gaps' / makes more leaky ; there may be other reasons for increase in oleic ; presence of hydrophobic core does not affect entry of ethanol molecules / AW ; AVP; credit all relevant points	3 max
	(iii)	similar, function to / role as, cholesterol (in membrane) ; provides stability to membrane (structure) ; regulates membrane fluidity / decreases fluidity ; ref. to hydrophobic, nature / interaction ; helps to prevent entry of ethanol ;	2 max
			al:17]

Question			Expec				Marks
5	(a)		$\begin{aligned} & \hline \mathbf{P}=\text { reverse transcriptase ; } \\ & \mathbf{Q}=\underline{\text { DNA polymerase ; }} \\ & \mathbf{R}=\text { restriction, enzyme / endonuclease ; } \end{aligned}$				
	(b)		any valid suggestion ; e.g. polypeptide / protein, too long / large, to sequence amino acid sequence not, fully determined / known nucleotide sequence too long easier / cheaper, to use restriction enzymes				1
	(c)	(i)	all correct = 3 marks deduct 1 mark each incorrect triplet sequences correct but RNA for DNA, one mark only				$\begin{gathered} 3 \\ \max \end{gathered}$
		(ii)	code degenerate ; 64 possible codons for only 20 amino acids ; (some) amino acids specified by more than one, codon / (base) triplet I different, codons / (base) triplets, can code for the same amino acid; so different nucleotide sequences (in a gene) may still give the same amino acids ; correct example from Table 5.1 ;				$\begin{gathered} 2 \\ \max \end{gathered}$
(d)			$\begin{aligned} & \mathbf{S}=\text { diabetes (mellitus) ; } \\ & \mathbf{T}=\text { haemophilia ; } \end{aligned}$				2

2805/05 Mammalian Physiology and Behaviour

	esti		Expected Answers	Marks
1	(a)	(i)	1. large / moveable, pinnae; A outer or external ear 2. direct / collect, sound waves / (air) vibrations ; 3. differences in, loudness / timing, between two ears ; 4. eyes, at front (of skull) / forward facing / large ; 5. fields of vision overlap / 3D vision / stereoscopic vision ; 6. judge distances more accurately / AW ; 7. ref. to keen sense of smell ; 8. AVP ; e.g. whiskers detect vibrations	4 max
		(ii)	large surface area (for heat loss) / ref. to blood supply ;	1
	(b)	1 2 3 4 5	```recessive allele for deafness; R gene symbols and key; penalise wrong symbols once heterozygous parents / carriers (for deaf allele); R gene gametes; offspring genotypes ; A deaf offspring gets recessive allele from each parent phenotypic ratio ; A 25% deaf ref. to mutation ;```	4 max
	(c)		swallow / yawn, opens Eustachian tube ; air can move in or out of middle ear / equalisation of air pressure (either side of ear drum) ;	2
				otal:11]

Question			$\begin{aligned} & \text { Expected Answers } \\ & \mathrm{I}^{1 / 3 \mathrm{C}^{1} / 1} ; \\ & \mathrm{PM}+\mathrm{M}^{5 / 5} \text { or } 5 / 6 ; \\ & =32 / 34 ; \end{aligned}$	Marks
2	(a)			
	(b)	(i)	$\frac{145}{} \times 100$ correct method wrong figs $=1$ mark but must have either 145 or 360 360 and be $\times 100$ $=40 \% ;$;	2
		(ii)	(enamel / chewing surface) ground / worn, down ; ora for carnivore tooth continues to grow ; ora for carnivore blood continues to enter tooth ; provides, nutrients / oxygen ;	2 max
	(c)	(i)	correct labels ;	2
		(ii)	large surface area; $\quad \mathbf{R}$ villi (increased) absorption of, water / ions ; more, carrier proteins / mucus secreting cells / blood supply ; A more mucus allows greater distension ;	2 max
	(d)	(i)	1. foreign / non-self, protein / antigen ; 2. on surface of / secreted by, bacteria ; 3. detected by, APC / macrophage / T cell ; R white cells 4. B cells, selected / stimulated; 5. clonal expansion / divide by mitosis ; 6. production of plasma cells ; 7. immunoglobulin / antibody, production / secretion ;	3 max

	(ii)	water / solute, potential (in lumen) lowered ; less than, (epithelial) cells / mucosa ; water passes, down / across, water / solute, potential gradient / high to low / AW ; \mathbf{R} along	2 max
(e)		stop / reduce, peristalsis ; R no longer contracts food / faeces, move more slowly / AW ; more time for water to be absorbed / more water absorbed ; less ions secreted into lumen therefore less decrease in, water / solute, potential :	2 max
			tal:18]

	stio		Expected Answers	Marks
3	(a)	(i)	1. osteoclasts (in ribs) ; 2. put, calcium / Ca^{2+}, (from bone) into blood ; 3. osteoblasts (in skull) ; 4. take up, calcium $/ \mathrm{Ca}^{2+}$ (from blood) ; 5. ref. to hormones; e.g. calcitonin / parathormone penalise $\mathrm{Ca} / \mathrm{Ca}^{+}$once	3 max
		(ii)	calcium phosphate / $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$; forms approx 60\% of bone mass / bone is mineralised; A two thirds hard ; provides rigidity ; compressive strength ;	3 max
	(b)		amine group / NH_{2}, instead of OH ;	1
	(c)		(pain) 1. more pain relief with, glucosamine / NSAIDs ; 2. no difference between glucosamine and NSAIDs ; (cartilage gap) 3. reduction in cartilage gap less with glucosamine / ora ; 4. less degeneration with glucosamine / glucosamine helps make cartilage 5. ref. to link between gap and pain ; e.g. decrease in gap leads to more friction 6. placebo effect described ;	4 max

(d)	1 2 3 4 4 5 6 7 8 8 9 10 11 12 13	Ca^{2+} diffuse from sarcoplasmic reticulum ; ignore T tubules Ca^{2+} bind to troponin ; troponin changes shape ; tropomyosin moves away from myosin binding site ; on actin ; myosin binds to actin / cross bridges form ; myosin head tilts / AW ; ADP and Pi released ; ATP binds to myosin head ; ATP hydrolysed ; energy released ; myosin head released from actin ; cycle repeated; AVP ; e.g. (myosin head) ATPase / shortening of H or I / Z lines closer penalise calcium / Ca / Ca+ once	7 max
		QWC - clear well organised using specialist terms;	1
		any 3 from: sarcoplasmic reticulum, troponin, tropomyosin, actin, myosin, hydrolysis.	
			tal:19]

	estio		Expected Answers	Marks
4	(a)		1. ref. photoreception of (bright) light / AW ; 2. action potentials / impulses, to brain ; 3. action potentials / impulses, along parasympathetic nerves / vagus (to iris) ; 4. circular muscles contract ; 5. radial muscles relax ; 6. ref. acetylcholine (at n.m. junction at end of psn) ;	3 max
	(b)	(i)	as time increases percentage of people correctly identified as being over legal limit decreases / AW ; non-linear relationship / AW ; comparative figs ;	2 max
		(ii)	non-invasive ; do not need medical staff or laboratory / can be done 'on the spot' ; no risk of infection ; less expensive ; immediate result / quicker ; avoids needle phobias ; gives better indication of reaction time :	2 max
	(c)		1. ethanol oxidised ; 2. NAD accepts hydrogen / NAD reduced ; 3. ethanol / alcohol, dehydrogenase ; 4. to ethanal ; 5. ref. ethanal / (acet)aldehyde, dehydrogenase ; 6. ethanoate / acetate / acetyl coA ; 7. enters Krebs cycle ; ignore location in cells	4 max

(d)	1. excess / too much, reduced NAD ; 2. less NAD for other reactions ; 3. dehydrogenation / oxidation, of fatty acids cannot take place / fatty acids cannot be broken down ; 4. fatty acids accumulate ; 5. converted to, fats / lipids / triglycerides ; 6. acetyl coA used for fatty acid synthesis ;				

Question		Expected Answers	Marks	
$\mathbf{5}$	(a)	(i)	A - centrum ; B - neural spine ;	
			$\mathbf{2}$	
		(bi)	side X - because of position of, neural spine / ribs / aorta ;	
separate centra (of two vertebrae) ; allow, movement / bending / flexibility ; shock absorbers / cushioning ; reduce friction / prevent damage ;	$\mathbf{1}$			
(c)	divide by mitosis ; differentiation ; become, neurones / other named cells ; AVP ; e.g. stimulated by, surrounding / damaged, tissue or genes switched, on / off	$\mathbf{2 ~ m a x ~}$		

2806/01 Unifying Concepts in Biology - Written Paper

Question		Expected Answers	Marks
$\mathbf{2}$	(a)	description D1 (\%) underweight, decreases / no change ; D2 (\%) acceptable decreases; D3 (\%) overweight, no significant change / fluctuates ; D4 (\%) obese increases; D5 data quote change with years ; DESCRIPTION MAX 3 explanation E1 food cheaper / portions bigger / less home cooking / more convenience food ; E2 more car journeys / less exercise / less manual labour ; E3 AVP ; e.g. warmer homes, less sleep, more alcohol consumption	5 max

Question			Expected Answers		Marks
3	(a)	(i)	DNA nucleotides / sugar + phosphate + base; phosphodiester bonds; double stranded / double helix ; 4 subunits / A, T, C and G;	protein amino acids ; peptide bonds ; ref. $2^{\circ} / 3^{\circ} / 4^{\circ}$, structure ; 20 subunits;	2 max
		(ii)	cytoplasm ; cell membrane ; cell wall ; ribosomes ; circular DNA ; glycogen granule / oil droplet / food store ; AVP; A slime capsule / mesosome / pili / flagellum / named bacterial function		3 max
	(b)	(i)	disulphide ;		1
		(ii)	deoxyribose / sugar ; R incorrect named sugar		1
	(c)	(i)	to, mark / label (molecules) ; to make (DNA and protein), traceable / trackable ; to distinguish DNA and protein ; AW		2 max
		(ii)	Experiment 1 radioactive DNA / radioactivity, found in offspring ; therefore DNA passed from parents to offspring ; AW Experiment 2 radioactivity not found in offspring; therefore, protein left in coat / not passed on ; AW		3 max
			[Total: 12]		

	stio		Expected Answers	Marks
4	(a)		DNA mutation ; altered protein synthesis ; problem with, DNA replication / cell division ; ref. cancer ; proteins denatured ; altered, 3D / tertiary / quaternary, shape ; ref. active site / specificity ; ref. protein function or named protein ; (e.g. enzyme / receptor / hormone) (max 3 either section)	4 max
	(b)	(i)	not supported ; mole rat has, low reduced:oxidized ratio / low \% reduced ; ora for mouse (mole rat) high / more, free radicals / damage; ora for mouse	3
		(ii)	D mice and mole rats different ages ; E mole rats had more time to, metabolise / experience free radical damage ; D mole rats usually live, underground / in low O_{2} conditions ; E exposed to abnormally high O_{2} in lab ; D organisms not perfectly matched for, size / hair cover ; E mole rats have lower BMR ; E not, comparable / fair test ; A once with any stated difference	4 max
	(c)		curve drawn to the left of mouse ;	1
				I: 12]

2806/03 Practical Examination

A2 Biology. Planning exercise

Checking point	Descriptor	The candidate			
A	P.1a	Plans a suitable procedure that involves preparing a calibration curve for urea concentrations and using it to determine urea in urine samples from people on diets with different quantities of protein (minimum of two diets) ;			
B	P.1a	Gives a prediction about excretion of urea (in the urine) with increasing protein intake;			
C	P.1b	Selects suitable equipment and materials to include water bath, graduated pipette / burette / syringe, named pH indicator / pH probe / pH meter ;			
D	P.3a	Describes deamination of amino acids and production of urea from ammonia (in the liver / hepatocytes) ;			
E	P.3a	Identifies at least 2 key factors to control either in making the calibration, e.g. duration, conc of urease, conc of indicator, temperature, volumes (NOT pH) or 2 key factors in the selection and treatment of subjects; this can be awarded in the method			
F	P.3b	Decides on a minimum of five different concentrations of urea with a range that includes at least one concentration greater than 2.5 g per 100 cm			
G	P.3b	Decides on appropriate number of protein diets to use: minimum of five different protein diets - described qualitatively or quantitatively;			
H	P.3b	Describes way of obtaining reliable results for the calibration curve by repeating each concentration twice / carrying out three replicates ;			
I	P.5a	Uses appropriate A2 scientific knowledge and understanding in developing a plan ; e.g. explains how urea is eliminated from the body - liver / hepatocytes, blood, kidney / explains how final concentration of urea			
in urine is determined (ref ADH, permeability of collecting ducts) / use of					
information about nitrogen balance			$	$	Uses, results or observations from preliminary work or previous practical
:---:	:---				
work in developing a plan; ;					

U	P.7b	Recognises that variable(s) cannot be controlled when using human subjects;
V	P.7b	Shows how to calculate the mass of urea excreted per unit time ;

Point mark up to $\mathbf{1 4}$ by placing letters A to U excluding L and O in the margin at appropriate points.

Then award 1 mark for each of \mathbf{L} and \mathbf{O} (QWC).
Total: 16

Further elaboration of checking points

A	Suitable methods: 1. hydrolyse urea completely, titrate against HCl using a suitable indicator; 2. hydrolyse using urease, and follow course of reaction with a suitable indicator until an end point - this method was Q. 1 June 2006. 3. Direct titration without calibration (see page 6). Protein diet may be qualitative (high /low) or quantitative \mathbf{R} this checking point if titration is carried out less than 10 minutes after adding urease, but A if checked to constant pH
B	Could be given for a sketch graph. Axes must be labelled. A concentration of urea. Units and values on the axes are not expected for this checking point. May award with T
C	Temperature - water bath , volume - burette / graduated pipette / syringe, monitoring pH - named indicator / pH probe / pH meter
D	This may be a diagram. If a source is cited then this contributes to \mathbf{N} A recognisable misspellings of deamination
E	Variables may be taken from a table, a list or from the method. Variables for the people could be age / sex / height / weight (mass) / exercise but not lifestyle / health unqualified
F	Concentrations must be given. These may be $\%$ or $\mathrm{g} \mathrm{dm}^{-3}$. For direct titrations see page 6. \mathbf{R} a table that only shows dilutions and does not show concentrations
G	Protein diets can be 'very high, high, average, low, very low' or given in terms of mass of protein per day or described in terms of grams of protein per kg body mass per day
H	Look for this in the method to give the calibration graph
I	If urea elimination, then this to include urea from liver to blood, transport in the blood, (ultra) filtration (reabsorption) and formation of urine.
J	There must be some indication that they have done something and then what they have done about it. 'It was too slow so I decided to use a water bath at $37^{\circ} \mathrm{C}$ ' is an example of the minimum acceptable answer
K	$0.1 \mathrm{ml} \mathrm{dm}^{-3} \mathrm{HCl}$ - corrosive / irritant; indicators - low hazard but accept harmful/irritant; urease - accept ref to allergies; refs to health risks of handling urine, use gloves; A $\mathrm{NH}_{4} \mathrm{CO}_{3}$ - irritant
L*	Lengthy, rambling, incoherent, illogical plans that you have to read two or three times don't get this one. 'Amount' used for volume may be a reason for not awarding this, but do not penalise both L and O if well structured with headings, tables, graphs, etc. \mathbf{R} for incorrect colours of indicators, also \mathbf{R} if only one part of the investigation is covered
M	Other ideas: gives degree of uncertainty in using burette $-+/-0.05 \mathrm{~cm}^{3}$ or less which may be expressed as a percentage error; rough titration followed by two concordant results; use of colour standard
N	The sources must be cited in the text - either in full or with a number that refers to a bibliography
O*	Use your professional judgement here. Use the standardisation scripts as a guide. Ignore a few minor slips or one or two consistent errors.
P	Table should have protein (+/- units), volume of $\mathrm{HCl} /$ conc of urea + unit in heading
Q	This is likely to be clear statement about using protein RNI, RDA, RDI, etc
R	Shown on calibration graph or described. Direct titrations - see page 6.
S	Change in water excreted, change in urea excreted over time
T	If a graph is described then dependent variable comes first: draw a graph of urea excreted / AW against protein intake' Obviously accept refs to $x /$ horizontal and $y / v e r t i c a l$. Units are not necessary. May award with B

\mathbf{U}	One or more variables that are difficult to control. Not for commenting on variables that are then controlled in the plan
\mathbf{V}	Converting concentrations into mass of urea per unit of time such as per day

Adapt the mark scheme for those who carry out 'direct titrations' where candidates plan to add urease to the urine sample, allow time for hydrolysis, titrate HCl against the ammonium carbonate and then use the results to calculate the concentration of urea. Chemists may do this. It is perfectly valid and must score the same marking points as the 'draw a calibration curve' method.

A Plans a suitable procedure that involves determining the urea concentration in urine samples by titration. Minimum of two protein diets. Urea and urease must be left for a minimum of ten minutes or pH checked to see if it is constant.

F States that 2 mol of HCl is equivalent to 1 mol of urea
H Plans to carry out replicates, as follows:

- divide each batch of urine into three separate reaction mixtures and carry out a titration with each one
- set up one reaction mixture and take 3 samples from it for 3 titrations If they do one (rough) titration and then continue until they get 2 results that are concordant or very close (or whatever) then that is H . It is also M .

L Do not penalise for the lack of a calibration graph if they use this method.
R Shows how to calculate the concentration of urea from titration results.

Apply the other marking points as per page 4.

Example of expected results for (a)

tube	concentration of sucrose $/ \mathrm{g} \mathrm{100} \mathrm{cm}^{-3}$	time to show colour change /s
A	7.5	20
B	5.0	29
C	2.5	55
D	1.0	120
E	0.5	280
F	unknown	72

Example of expected graph for (b)

Question			Expected Answers	Marks
1	(a)		table format with column / row headings - concentration of sucrose, time taken for colour change ; \mathbf{R} time unqualified ignore tube label, \boldsymbol{F} has no concentration units in column / row headings ; g $100 \mathrm{~cm}^{-3}$ and minutes / seconds \mathbf{R} if units in body of table ecf if concentration of sucrose not given time recorded in seconds; results for all six tubes; tube A fastest ;	5
	(b)		accept graphs that show rate with 1000/t or equivalent as the rate unit	
		6	axes correct with concentration of sucrose on horizontal axis even if not labelled; axes scaled $-\mathrm{x}=$ at least $7.5 \mathrm{~cm}, \mathrm{y}=$ at least 12 cm ; no need to start at 0,0 axes labels with units - concentration / $\mathrm{g} 100 \mathrm{~cm}^{-3}$ and time / s ; points plotted accurately; A +/- half a small square circle any mistakes appropriate line of best fit ; \mathbf{R} if extends beyond first and last point unless used for estimating \mathbf{F} A 'dot to dot' if ruled intercept shown on the graph for \mathbf{F};	6
	(c)		concentration determined correctly from the graph ; results in correct range $=1.5-2.5$; g $100 \mathrm{~cm}^{-3} / \%$;	3
	(d)		$50\left(\mathrm{mg} \mathrm{cm}^{-3}\right)$; if not in table look for this in the calculation	1
	(e)		award two marks for the correct answer (119) if incorrect answer given, allow one mark for writing out the calculation correctly allowing ecf from (d) 119 ;; A range 119.0 to 121.5 concentration of sucrose in the urine $=50 \mathrm{mg} \mathrm{cm}^{-3} / \mathrm{A}$ ecf urine formation rate $=1.67 / 1.7 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ (concentration of sucrose in the blood $=0.7 \mathrm{mg} \mathrm{cm}^{-3}$) filtration rate $=\frac{50 \times 1.67}{0.7}=119 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ A $100 / 60$ for 1.67	2
	(f)		idea that concentration (of sucrose) depends on volume of water excreted	1
	(g)		sucrose is a non-reducing sugar ; (HCl) breaks glycosidic bond; \mathbf{R} glucosidic by hydrolysis ; to produce, glucose / fructose / monosaccharide(s) / reducing sugars ; correct descriptions of reaction with Benedict's solution ; e.g. $\mathrm{Cu}(\mathrm{II}) \rightarrow$ Cu(I) boiling, increases rate of reaction / provides energy for breaking bonds / reduces activation energy / AW ;	3 max

Question			Expected Answers	Marks
			In the drawings circle areas that do not have clear continuous lines	
2	(a)		drawing LP plan (no cells) with at least 5 capsules drawn; \mathbf{R} dots for capsules clear, continuous lines ; uneven distribution of capsules; different sizes of capsules and capsules not all circular ;	4
	(b)		drawing draws complete section (in TS) with clear continuous lines ; R if any shading / lines to represent microvilli / open ended / more than one tubule 2-8 nuclei ; at least three nucleoli ; A dots / blobs labels - tick to max 4 and then stop nucleus; nucleolus / chromatin / AW ; brush border / striated border / microvilli / AW ; R cilia lumen; cytoplasm ; epithelium ; basement membrane (only if shown outside cells) ; \mathbf{R} basal membrane annotations (nucleus) - purple / blue ; A ref to contrast (e.g. nucleus/nucleolus darker than cytoplasm) (nucleolus) - dark, purple / blue ; (cytoplasm) - red / pink / orange ; (basement membrane) - purple / blue ; cuboidal / AW ; 2 max	9
	(c)		question asks for structure - size is neutral assume answer refers to medulla unless told otherwise no, renal capsules / Bowman's capsules ; no glomeruli ; no convoluted tubules ; longitudinal orientation of tubules / AW; A vessels tubules run parallel / AW ; A vessels (tubule) cells have no, microvilli / brush border ; loops; collecting ducts ; vasa recta / AW;	2 max
	(d)	(i)	award two marks if correct answer $(7 \mu \mathrm{~m})$ is givenif answer is not $7 \mu \mathrm{~m}$, allow one mark for dividing a measurement by 7500$7 \mu \mathrm{~mm}$;; \quad accept $0.0007 \mathrm{~cm} / 7 \times 10^{-4} \mathrm{~cm} / 0.007 \mathrm{~mm} / 7 \times 10^{-3}$ mm , etc	2

Grade Thresholds

Advanced GCE Biology (Aggregation Code 3881 7881) June 2008 Examination Series

Unit Threshold Marks

Unit		Maximum	A	B	C	D	E	U
2801	Raw	60	45	39	33	28	23	0
	UMS	90	72	63	54	45	36	0
2802	Raw	60	47	43	39	35	31	0
	UMS	90	72	63	54	45	36	0
2803A	Raw	120	97	87	77	67	57	0
	UMS	120	96	84	72	60	48	0
2803B	Raw	120	95	85	75	65	55	0
	UMS	120	96	84	72	60	48	0
2803C	Raw	120	94	84	74	65	56	0
	UMS	120	96	84	72	60	48	0
2804	Raw	90	67	60	53	46	40	0
	UMS	90	72	63	54	45	36	0
2805A	Raw	90	63	55	48	41	34	0
	UMS	90	72	63	54	45	36	0
2805B	Raw	90	58	51	44	37	30	0
	UMS	90	72	63	54	45	36	0
2805C	Raw	90	64	57	51	45	39	0
	UMS	90	72	63	54	45	36	0
2805D	Raw	90	60	54	48	42	36	0
	UMS	90	72	63	54	45	36	0
2805E	Raw	90	62	55	48	41	34	0
	UMS	90	72	63	54	45	36	0
2806A	Raw	120	89	81	73	65	57	0
	UMS	120	96	84	72	60	48	0
2806B	Raw	120	89	80	71	63	55	0
	UMS	120	96	84	72	60	48	0
2806C	Raw	120	86	77	68	60	52	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 1}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 1}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 1}$	16.6	34.0	53.1	70.9	85.4	100	19941
$\mathbf{7 8 8 1}$	25.8	48.3	69.0	85.8	96.7	100	16210

36151 candidates aggregated this series

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

