RECOGNISING ACHIEVEMENT

2805/02 Applications of Genetics

June 2005

Mark Scheme

	l	$=$	alternative and acceptable answers for the same marking point
Abbreviations,	$;$	$=$	separates marking points
annotations and	NOT $=$ answers which are not worthy of credit		
conventions used in the	R	$=$ reject	
Mark Scheme	$=$ words which are not essential to gain credit		
		$=$ (underlining) key words which must be used to gain credit	
	ecf $=$ error carried forward		
AW $=$ alternative wording			
A	$=$ accept		
ora $=$	or reverse argument		

Question	Expected Answers	Marks
1 (a) (i)	Aabb - pink ; aaBB - green ;	2
(ii)	(dominant) epistasis ; ref to, epistatic / hypostatic, gene ; ref to, promoter / gene switching ; increased, transcription / expression ; AVP ; enzyme to alter pigment / change structure of pigment / make more pigment / complementary action	$\max 3$
(b) (i)	parents (AaBb) red spines $\times(\mathrm{aabb})$ green spines ; gametes $\mathrm{AB} \mathrm{Ab} \mathrm{aB} \mathrm{ab} \times \mathrm{ab}$; A from Punnett square offspring genotypes ; ; minus 1 for each of first two mistakes phenotypes related to genotypes; A key	
	ratio 1 red spines : 1 pink spines : 2 green spines;	$\max 5$
	gametes $A B$ $A b$ $a B$ $a b$ $a b$ $A a B b$ $A a b b$ $a a B b$ aabb red spines pink spines green spines green spines	
(ii)	many AaBb and aabb; ref 1: 1 ratio of these; ref linkage ; ref parental types ;	
	few Aabb and aaBb ; ref 1:1 ratio of these; ref recombinants ; ref crossing over ;	
	many red and green spined ; few / no, pink spined; 1:1 green : red/more green than red; ref proportions depend on how close, loci / genes, are ;	max 5

2 (a) 1 prevent, self-pollination / unwanted pollination, of flowers ;
2 detail of prevention ;
3 cross-pollinate two varieties ; A crossed / mated / hybridised
4 detail pollination;
5 isolate, plants / flowers;
6 collect seeds and sow ;
7 in high salt concentration ;
8 select plants, which survive / can tolerate, high concentration ;
9 and have large, tasty tomatoes ;
10 interbreed these plants;
11 repeat selection;
12 ref many generations;
13 cross with variety with large tomatoes to improve size ;
14 cross with variety with good flavour to improve taste ;
15 ref backcrossing with original variety for salt tolerance ;
16 AVP;
17 AVP;
e.g. ref background genes / hybrid vigour / heritability / effect on vigour / ref setting up pure-breeding initial lines

QWC - legible text with accurate spelling, punctuation and grammar ;
(b) (i) active transport ;
(energy from), ATP / respiration ;
against concentration gradient ;
ref binding site for ion / AW ;
ref change of shape of protein ;
(ii) GE quick(er) / SB slow(er) ;
(tolerance) in one generation (v. many generations) ;
ref one gene / rest of genome unaltered (v . hybridisation) ;
background genes intact (v . need for backcrossing) ;
different varieties engineered for different conditions ;
no problem re interbreeding ;
can select, transporter system / AW, / from, another species / named taxon;
can select, transporter system / AW, / for maximum efficiency ;
AVP;
Question Expected Answers
3 (a) loss of genetic, diversity / variation ; A gene pool, reduced / eroded loss of alleles ;
increased homozygosity / decreased heterozygosity ;
increased expression / accumulation, of deleterious recessives ;
inbreeding depression ;
loss of, vigour / fertility / fitness ;
(b) (selective) advantage / named (selective) advantage ; behaviour favouring mating with non close relative ;
increased genetic variation (so more offspring survive) ;
hybrid vigour / increased heterozygosity / decreased homozygosity / reduced inbreeding depression ;
AVP ; e.g. idea dominant male
(c) 1 DNA extracted from cell sample / named cell sample ;
2 cut by restriction enzyme(s) ;
3 electrophoresis;
4 fragments placed in well at (cathode) end of gel ;
5 ref to, agarose / polyacrylamide ;
6 PD applied ;
7 DNA negatively charged;
8 fragments travel to anode ;
9 smaller / shorter, fragments travel further (ora) ;
10 Southern blotting;
11 radioactive / ${ }^{32} \mathrm{P} /$ fluorescent, probe(s);
12 single stranded;
13 ref single locus probe ;
14 complementary binding;
15 autoradiograph / use of X ray film ; R use of X rays
16 share pattern of bands ;
17 ref VNTRs;
18 same, number of repeats / lengths, DNA move same distances
19 number of repeats / lengths / VNTRs, inherited;
20 AVP ; e.g. scale from fragments of known size / PCR
QWC - clear well organised using specialist terms ;
award the QWC mark if three of the following are used in correct context
do not award if the sequence is seriously incorrect
restriction enzyme electrophoresis
agarose polyacrylamide
Southern blotting autoradiograph
VNTRs PCR
Question Expected Answers Marks
4 (a) store of alleles ;
to maintain, genetic diversity / genetic variation / gene pool ;
to counteract, inbreeding / genetic erosion ;
to maintain traits for future use ;
(allele) for resistance to, 'new' / mutated, pathogen ;
for tolerance to environmental change ;
ref to, endangered species / rare breeds ;
for post-mortem use ;
AVP;
(b) (i) $1^{\circ} \mathrm{C} \mathrm{min}^{-1}$;
(ii) ice crystals;
grow in size ;
break membranes ;
when insufficient water withdrawn from cell ;
when freezing, not quick enough / not uniform ;
(iii) not only need mitochondria;
ref energy / ATP ;
some other essential component damaged ;
e.g. other essential component ;;
AVP ;
(c) advantages two of following ;;
saves cost of male
saves problems of keeping male
access to range of males
saves, cost / stress, of transport of male
saves stress of mating
speeds up selective breeding
speeds up progeny testing
quickly available
sperm can be, genetically tested / sexed
AVP
disadvantages two of following ;;
damage of stored sperm
overuse of one sire so (potential) inbreeding
requires, vet / skill
problem should sire have genetic defect
cost
AVP
[Total: 15]
Question Expected Answers Marks
5 (a) (i) mutation;
chance / random / preexisting ;
insecticide acts as selective, agent / pressure ;
susceptibles die / resistants survive ;
resistants pass, mutation / allele, to offspring ; A gene
$\max 3$
(ii) mosquito is vector; A carrier
obligatory / AW ;
part of life cycle is in mosquito ;
not killed by insecticide ;
(b) (i) DNA from two different sources ;
combined / joined / AW ;
(ii) restriction enzymes cut DNA ;
at specific sites ;
detail of sites ;
may give sticky ends ;
complementary sticky ends join ;
terminal transferase / enzyme, adds sticky ends ;
ligase joins, gaps / nicks ;
$\max 3$
(c) (i) fewer genetically engineered mosquitoes pass parasites across midgut; A figures
fewer g e mosquitoes have parasites in salivary glands; A figures
fewer g e mosquitoes can infect (uninfected) mice; A figures
'less good as vectors' instead of all of first three points = 1 only
use of comparative figures ;
(ii) benefit one of following;
reduce use of, insecticide / drug
safer than, insecticide / drug
AVP
hazard one of following ;
parasite may develop resistance
gene may pass to other species
AVP

Question

Expected Answers
Marks
6 (a) (i) change in sequence of base pairs (in a DNA molecule);
unpredictable / AW ;
detail ; e.g. addition / substitution / deletion / frame shift / small part of chromosome / may code for different protein / may code for no protein
(ii) recessive (allele);
autosomal / chromosome 7 ;
homozygote recessive $=$ sufferer ;
heterozygote = carrier ;
correct statement re inheritance ;
e.g. both parents of sufferer must be carriers / 1 in 4 chance of sufferer from carrier parents
(iii) thick / dehydrated, mucus builds up in lungs ;
and gut ;
(bacterial) infections in lungs ;
scar / damage, lungs ;
mucus blocks secretion of digestive enzymes (from pancreas) ;
malnutrition / inadequate, digestion / absorption ;
mucus blocks sperm duct / males sterile ;
(iv) large number of mutations;
ref unrecognised / unknown, mutations ;
each test specific ;
DNA has different, code / base sequence ;
probe binds to complementary base sequence ;
(b) mutation may give different, amino acid / primary structure ; A ref stop codon
some mutations alter, molecular shape / tertiary structure / binding ;
so unable to, accept / transport, $\mathrm{HCO}_{3}{ }^{-}$;
unable to bind ATP ;
so increase in acidity / decrease in pH ;
effect on mucus ;
effect on enzyme(s) ;
ref pH optimum of enzyme(s) ;
poor digestion of, protein / lipid / starch ;
some mutations, give some transport / have less effect ;
$\geq 33 \%$ (of norm) allows normal digestive function / $\leq 6 \%$ (A very low) does not;

