

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

BIOLOGY 2806/01

Unifying Concepts in Biology

Tuesday

28 JANUARY 2003

Morning

1 hour 15 minutes

Candidates answer on the question paper.
Additional materials:
Electronic calculator

Candidate Name	Centre Number	Candidate Number

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces on the question paper.
- Read each question carefully before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	15	
2	12	
3	11	
4	11	
5	11	
TOTAL	60	

Answer all the questions.

1 Human blood from different individuals may have different types of haemoglobin. The common type is called haemoglobin A. A second type, haemoglobin S, causes sickle cell anaemia and a third type, haemoglobin C, produces a less serious form of anaemia.

Haemoglobin types are identified by a technique called electrophoresis.

- Red cells in blood samples are broken open to release the haemoglobin.
- Wells are cut in a block of polysaccharide gel.
- The samples are placed in the wells.
- An electrical potential is applied across the gel.
- Haemoglobin molecules move through the gel towards the anode.
- Each type of haemoglobin moves at a slightly different rate to form distinct bands in the gel.

Fig. 1.1 shows the result of electrophoresis of haemoglobin from several people.

- Samples 1 and 8 were from individuals who were known to have only common haemoglobin.
- Sample 3 was from an individual known to have haemoglobin C anaemia.
- Sample 5 was from an individual known to have sickle cell anaemia.
- Samples 2, 4, 6 and 7 were from blood samples being tested.

position of cathode (-)

Fig. 1.1

(a)	Usir	ng the information provided, and Fig. 1.1,
	(i)	suggest why samples from people with common haemoglobin were placed in wells at positions 1 and 8;
		[2]
	(ii)	name the haemoglobin types present in samples 2, 4, 6 and 7.
		2 4
		6 7
(b)		moglobin types are genetically controlled. They are the result of single nucleotide morphisms.
		gle nucleotide polymorphisms (SNPs) are DNA variants that involve a difference in one base pair, as shown in Fig. 1.2.
		A A A G C T T T T G A C T T C G G G T T A C T T T C G A A A A C T G A A G C C C A A T G
	and	
		A A A G C T T T T T G A C A T C G G G T T A C T T T C G A A A A A C T G T A G C C C A A T G
		Fig. 1.2
		h polymorphism is believed to have originated as a random mutation. This became e common, either as a result of selection or by chance.
	(i)	Explain what is meant by selection.
		[2]
	(ii)	Suggest how a new DNA nucleotide sequence may become common by chance.
	()	The second secon
		[2]

(c) Several SNPs exist in the DNA that codes for the haemoglobin polypeptides. Molecules of human haemoglobin have two alpha polypeptides and two beta polypeptides.

The sixth amino acid in the beta polypeptide is

- glutamic acid (glu) in haemoglobin A
- valine (val) in haemoglobin S
- lysine (lys) in haemoglobin C.

Fig. 1.3 shows the genetic code. The first, second and third base in each codon are shown on the sides of the figure.

SECOND BASE

			U		С		A		G		
		บบบ	nha	UCU		UAU	tree	UGU	OVE	U	
		UUC	- phe	UCC	oor	UAC	tyr	UGC	cys	С	
	U	UUA		UCA	ser	UAA	stop	UGA	stop	Α	
		UUG		UCG		UAG	stop	UGG	try	G	
		CUU	leu	CCU		CAU	his	CGU		U	
BASE		CUC	leu	CCC	nro	CAC	1119	CGC	arg	C	
	С	CUA		CCA	pro	CAA	ala	CGA	ary	Α	Ļ
		CUG		CCG		CAG	gln	cgg		G	4
FIRST		AUU		ACU		AAU	asn	AGU	ser	U	ם ב
正	1	AUÇ	ile ACC	thr	AAC	asii	AGC	3CI	С	F	
	Α	AUA		ACA	thr	AAA	h	AGA	ara	Α	
		AUG	met/start	ACG		AAG	lys	AGG	arg	G	
		GUU		GCU		GAU	aen	GGU		U	
	(GUC	vo!	GCC GCA	ala	GAC	asp	GGC	alv	С	
	G	GUA	vai		ala	GAA	alu	GGA	gly	Α	
		GUG		GCG		GAG	glu	GGG		G	ļ

Fig. 1.3

For Examiner's Use

	(i)		ethionine (met) is AUG. Define the term <i>codon</i> .
	(ii)		code shown is mRNA rather than DNA.
			[1]
	(iii)	Give the mRNA haemoglobin.	base change that results in each of the following types of
		haemoglobin S	from base to base
		haemoglobin C	from base to base[2]
(d)		elain how a single moglobin significa	e amino acid substitution can change the properties of the ntly.

			[2]
			[Total: 15]

[Turn over

For Examiner': Use

2 Several groups of discs cut from spinach leaves were placed in test tubes of water. The discs all sank to the bottoms of the tubes. The tubes were each placed at a measured distance from a lamp, as shown in Fig. 2.1.

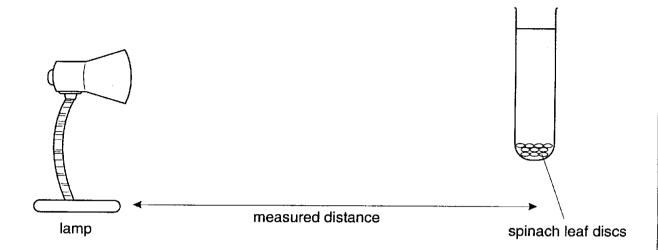


Fig. 2.1

(a)

The experiment was carried out at a constant temperature. Explain why.
[2]
· •

The lamp was switched on and the time taken for five of the ten discs in each tube to float was recorded. The results are shown in Table 2.1.

Table 2.1

tube number	distance from lamp/mm	time taken for 5 discs to float/seconds
1	50	125
2	100	210
3	150	360
4	200	600
5	250	none floated in the time available

(b)	(i)	Describe and explain the trend shown by the results in Table 2.1.
		[4]
	/!!\	
	(ii)	Suggest why the experimenter recorded the time taken for five discs to float rather than the time taken for all of them to float.
		[2]
(c)	boile	experiment was repeated by putting spinach leaf discs into water that had been ed for several minutes and cooled in the absence of air. None of the discs floated. lain why.
	•••••	
		[2]

For Examiner's Use

(d) The experiment was repeated at a lower temperature. The results are shown in Table 2.2.

Table 2.2

tube number	distance from lamp/mm	time taken for 5 discs to float/seconds
1	50	275
2	100	390
3	150	410
4	200	620
5	250	none floated in the time available

, , ,	Using the data in Tables 2.1 and 2.2, expla greater when the lamp is closer to the tube.
[Total: 12]	

2806/01 Jan03

BLANK PAGE

2806/01 Jan03 [Turn over

Downloaded from http^{1,9}/www.thepaperbank.co.uk

For Examiner's Use

3 (a) Fig. 3.1 shows two ways in which water uptake and loss by a shoot could be investigated.

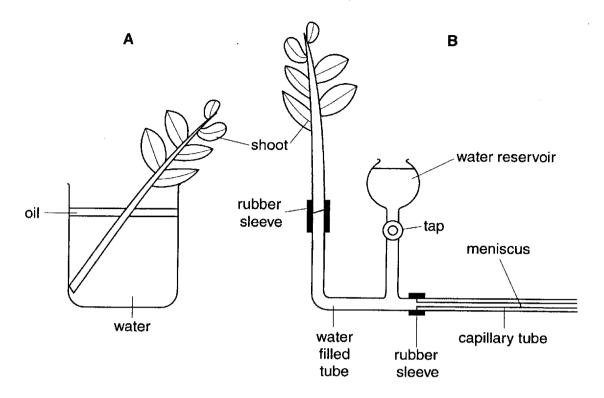


Fig. 3.1

In method $\bf A$, the whole apparatus is weighed, either at intervals or on a balance that allows a continuous record to be maintained, and the mass lost is recorded. Oil prevents evaporation.

In method ${\bf B}$, the time taken for the water meniscus to move a measured distance towards the shoot is recorded.

Discuss the advantages and disadvantages of these methods.
[4]

For Examiner's Use

(b)	In this question, one mark is available for the quality of written communication.
	Discuss the importance of water in the life of plants.
	·
	,
	,
	701
	Quality of Written Communication [1]
	[Total: 11]

[Turn over

For Examiner Use

4 More than one mechanism helps to regulate human blood pressure, maintaining it within limits and returning it to resting values after changes brought about by exercise. One of these mechanisms involves the afferent arterioles that supply blood to the glomeruli of the kidneys.

(a)	Explain why blood pressure is important for kidney function.					
	·					
	[2]					

The kidneys help to regulate blood pressure by means of a hormone called angiotensin II. Fig. 4.1 shows the way in which this hormone is produced and how it acts to change blood pressure.

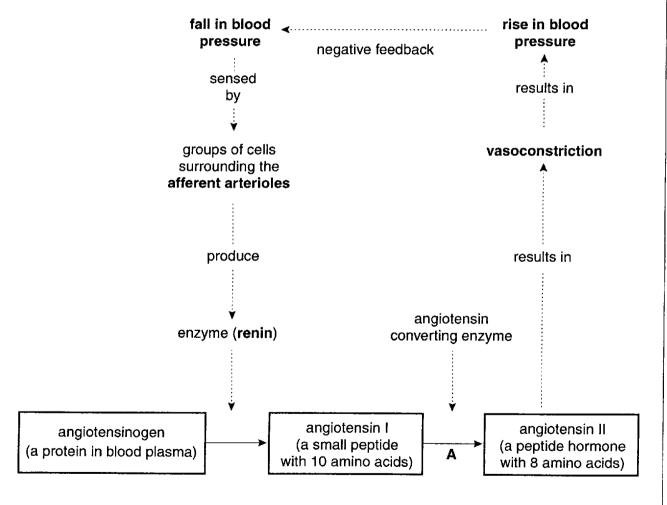


Fig. 4.1

Usi	ng Fig. 4.1,
(i)	state the type of reaction occurring at A.
	[1]
(ii)	Explain why this system is an example of negative feedback.
	[3]
Vas	oconstriction is the narrowing of arterioles and small arteries.
	Explain how vasoconstriction is brought about.
(1)	
	[2]
(ii)	Suggest how angiotensin II may act to increase the extent of vasoconstriction.
	[1]
hyp	erson with a resting blood pressure that is significantly above normal has ertension. This is a risk factor in several life threatening diseases and may be trolled by the use of drugs.
	ng Fig. 4.1, suggest and explain one way in which a drug might act to lower blood ssure.
	[2]
	[Total: 11]
	(ii) (iii) Vas (ii) A p hyp cont Usir

For Examiner's Use

5 Ranunculus acris and Ranunculus repens are common plants in fields, road verges and other habitats. Both are known by the popular name 'buttercup'. Each has characteristic structural features that allow the two species to be identified reliably. Preserved fruits and pollen from both have been found in deposits dating from before the last ice age, so they have coexisted in the British Isles for many thousands of years.

Fig. 5.1 shows leaves of both species, taken from plants growing less than a metre apart on the same lawn.

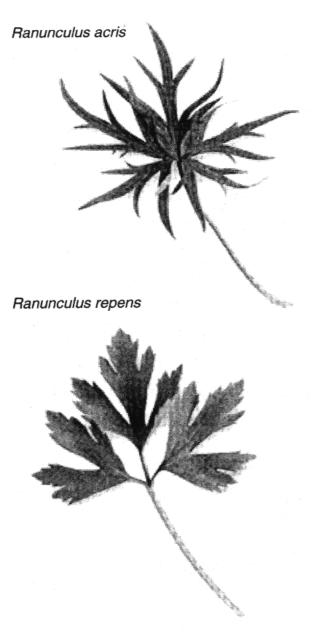


Fig. 5.1

Describe two ways, other than size, in which the leaves of the species differ.		
1		
2		

(b)	Ecologists are always interested in examples of similar species that are members of the same community. Theory suggests that this should not occur.					
	Explain why two very similar species are not expected to occur together in the same community.					
	[2]					
(c)	In an investigation of the influence of soil water content on the establishment of buttercups, containers were set up as shown in Fig. 5.2.					
soil wat	drainage hole at soil surface drainage hole at base of soil erlogged containers soil well drained					
Fig. 5.2						
Seeds of Ranunculus acris and Ranunculus repens were sown on the surface of soil in the containers. The number of plants of each species that became establish in each container was recorded.						
List three variables that need to be controlled to make this investigation valid.						
	1					
	2					

For Examiner's Use

- (d) Several replicate containers were prepared and 100 buttercup seeds were sown in each. The sowings, in both waterlogged and in well-drained soils, were as follows:
 - only Ranunculus acris (pure acris)
 - only Ranunculus repens (pure repens)
 - 50 seeds of each species (mixed sowing)

The number of plants of each species that became established in each container was recorded and the results of the investigation are shown in Table 5.1.

Table 5.1

		waterlogged soil		well-drained soil			
		pure <i>acris</i> sown	pure <i>repens</i> sown	mixed sowing	pure <i>acris</i> sown	pure <i>repens</i> sown	mixed sowing
	acris	2		0	60	_	13
	repens	<u> </u>	31	11	-	3	1
	acris	0	_	1	56	_	17
number	repens	_	23	17	_	2	1
of plants	acris	0	_	0	61	_	18
established	repens	_	26	15	_	0	0
in each container	acris	1	_	0	47	_	32
Comainer	repens	_	17	9	_	0	0
	acris	0	_	1	52	-	29
	repens	_	22	12	_	0	0
	acris	1	_	0	55	_	
mean	repens	_	24	13	_	1	

(i)	Calculate and insert in the shaded boxes in Table 5.1, the mean values that have been omitted. Give your answers to the nearest whole number. [2]
(ii)	Does the data in Table 5.1 support the hypothesis that there is competition between <i>R. acris</i> and <i>R. repens</i> ? Explain your answer.
	[2]
	[Total: 11]