

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

BIOLOGY 2803/01

Transport

Monday

27 MAY 2002

Morning

45 minutes

Candidates answer on the question paper. Additional materials: Electronic calculator

Candidate Name	Centre Number	Candidate Number

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 45.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use an electronic calculator.
- You are advised to show all the stages in any calculations.

FOR EX	AMINER	'S USE
Qu.	Max.	Mark
1	13	
2	17	
3	4	
4	11	
TOTAL	45	

2

Answer all questions.

For Examiner's Use

1 Fig. 1.1 shows the outline structure of some cells from the phloem of a dicotyledonous plant.

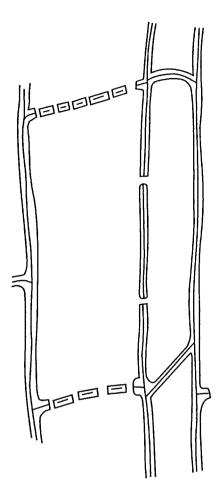


Fig. 1.1

(a)	(i)	Label the following structures on the diagram using label lines:	
		sieve tube, sieve plate, sieve pore, companion cell, plasmodesma.	[5]
	(ii)	Complete the drawing by adding cytoplasm and a nucleus or nuclei wappropriate. Label these components.	here [2]
Мо	veme	ent in phloem occurs between sources and sinks .	
(b)	Use	e examples of regions in a plant to explain the meaning of these terms.	

Table 1.1 shows some of the typical components of phloem sap.

Table 1.1

component	concentration/mg cm ⁻³
sucrose	80 - 160
protein	1.45 - 2.20
amino acids	5.20
phosphate ions	0.35 - 0.55
potassium ions	2.30 - 4.40
ammonia	0.03
ATP	0.24 - 0.36
auxin	10.5 x 10 ⁻⁶

(c)	Sta	e the form in which carbohydrate is translocated in the phloem.
		[1]
Trai	nsloc	ation is considered to be an active process.
(d)	Stat	re,
	(i)	what is meant by an active process;
		[1]
	(ii)	two pieces of evidence supporting the idea that translocation in the phloem is active.
		1
		2[2]
		[Total : 13]

2 Fig. 2.1 shows red blood cells (erythrocytes) in cross section and surface view.

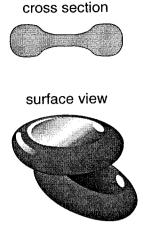


Fig. 2.1

7μm

(a)	Explain three ways in which the structure of a red blood cell is adapted to its function.
	1
	2
	3
	[3]

5

For Examiner's Use

Fig. 2.2 shows the dissociation curves for fetal and maternal haemoglobin in humans. The shape of the curves is described as sigmoid (S-shaped).

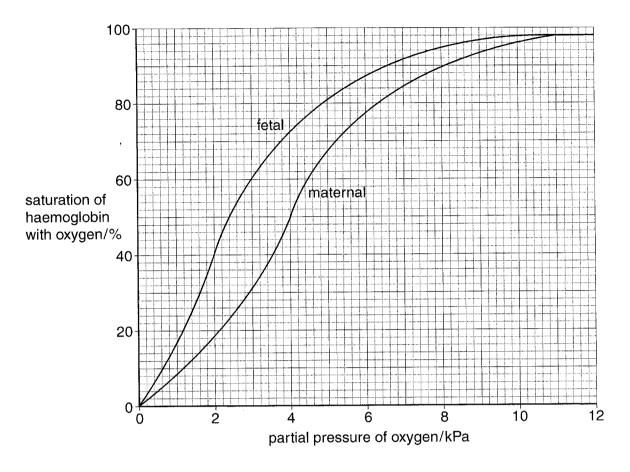


Fig. 2.2

(b)	Explain the advantage, in terms of oxygen supply to the tissues, of the fact that the maternal curve is sigmoid.
	[3]
(c)	State the difference in percentage saturation of haemoglobin with oxygen between maternal and fetal blood at an oxygen partial pressure of 4 kPa.
	[1]

6

(d)	Explain why it is essential for the survival of the fetus that the fetal curve is to the left of the maternal curve.
	?

2803/01 S02

For Examiner's Use

7

For Examiner's Use

1	Describe the structure of arteries and explain how their structure is related to the function.
1	(In this question, one mark is available for the quality of written communication.)
	· · · · · · · · · · · · · · · · · · ·
	1
	[6

[Total : 17]

8

For Examiner's Use

[Total: 4]

3 Fig. 3.1 shows the pathways taken by water across the cells in the root of a dicotyledonous plant.

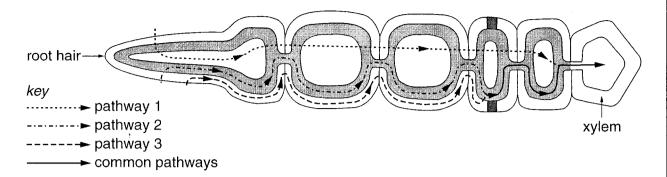


Fig. 3.1

(a)

Label the endodermis on the diagram.	[1]
Using the information in Fig. 3.1, describe the pathways taken by water across root.	the
	••••
	••••
	••••
	[3].

10

BLANK PAGE

9

For Examiner's Use

(a)		nplete the following paragraph on the cardiac cycle using the most appropriate word ords.
	The	sequence of events during the beating of the mammalian heart is called the cardiac
	cycl	e. On average there are about such cycles per minute in
	rest	ing humans. The cardiac muscle isi.e. it can contract and
	rela	x without nervous stimulation, but to ensure that the cycle stays in sequence there is
	an i	n-built control system. The cycle is initiated in a special part of the muscle in the wall
	of t	ne
	wav	e of excitation causing the atria to contract. After a delay of about 0.6 sec. the wave
	of e	excitation passes to the ventricles via the situated in the
	sep	tum at the junction of the atria and ventricles. The excitation wave then passes to
	the	base of the ventricles via the causing the ventricles to
	•••••	from the base upwards. [7]
The		nmalian circulatory system is described as 'closed' and 'double'. [7]
The (b)	e mar	
	e mar	nmalian circulatory system is described as 'closed' and 'double'.
	e mar Stai	nmalian circulatory system is described as 'closed' and 'double'. te the meaning of the terms
	e mar Stai	nmalian circulatory system is described as 'closed' and 'double'. te the meaning of the terms closed;
	e mar Stat	nmalian circulatory system is described as 'closed' and 'double'. te the meaning of the terms closed;
	e mar Stat	nmalian circulatory system is described as 'closed' and 'double'. te the meaning of the terms closed;
	e mar Stat	nmalian circulatory system is described as 'closed' and 'double'. te the meaning of the terms closed;
	e mar Stat	nmalian circulatory system is described as 'closed' and 'double'. te the meaning of the terms closed;