Subject: Central Concepts Code: 2804

Session: January Year: 2002

Mark Scheme

MAXIMUM MARK	$\mathbf{9 0}$

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
$\mathrm{x} \quad=$ incorrect response (errors may also be underlined)
$\wedge \quad=$ omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf $\quad=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Mark Scheme Page 3 of 10	Unit Code $\mathbf{2 8 0 4}$	Session January	Year 2002	Version Final

Abbreviations, annotations and conventions used in the Mark Scheme	I nOT NOT $\overline{\text { ecf }}$ AW ora	```= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit \(=\) (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```

Question

Expected Answers
1 (a) (i) A-glycolysis;
B - (lactate) fermentation / anaerobic respiration / reduction of pyruvate;
C - aerobic respiration / Krebs cycle and oxidative phosphorylation / ETC;
(ii) C ;
(iii) A ;
(b) (i) nucleus, ribosomes; (both for mark)

If more than two mentioned score zero
(ii) pyruvate is end product of glycolysis; A glucose to pyruvate in cytoplasm / cytosol;
glycolytic enzymes not in mitochondria;
pyruvate can enter mitochondria / glucose cannot; no carriers for glucose (in mitochondrial membranes);
carbon dioxide produced in Krebs cycle; and link reaction;
decarboxylation / decarboxylase(s);
can refer to pathways A, B and C
$\max 3$
(iii) cyanide prevents, oxidative phosphorylation / aerobic respiration / full oxidation of glucose / AW, taking place; R ETC / cytochromes reduced NAD not oxidised / AW; no dehydrogenation / no oxidation; Krebs cycle stops / no decarboxylation;
lactate is produced in cytoplasm / lactate pathway can occur / only B can
occur / only anaerobic respiration can occur / pyruvate acts as H acceptor;
does not involve, cytochromes / ETC / oxidative phosphorylation;
enzymes in cytoplasm not inhibited by cyanide;
(c) carbon dioxide, ethanol; (both for mark) \mathbf{R} ethanal, alcohol

Mark Scheme Page 5 of 10	Unit Code $\mathbf{2 8 0 4}$	Session January	Year 2002	Version Final

(iv) proteins / polypeptides / named protein; lipids / oils / fats;
DNA / RNA / nucleic acids;
chlorophyll; 2
[Total: 18]

Mark Scheme Page 6 of 10	Unit Code $\mathbf{2 8 0 4}$	Session January	Year 2002	Version Final

Question

Expected Answers
Marks
3 (a) (members of) same species / named species;
(compete for) same resource / named resource;
2
(b) (i) Mark each conclusion separately. Must refer to roots in any conclusion. One mark for statement and second mark for supporting data from table.
cheatgrass has longer roots than wheatgrass (when grown separately / always);
wheatgrass has reduced root growth in presence of cheatgrass / ora;
as proportion of cheatgrass increases root length of wheatgrass decreases; wheatgrass encourages growth of cheatgrass / AW;
in mixture with highest proportion of cheatgrass, cheatgrass roots decrease in length;
ref to figures;;

$$
2+2
$$

(ii) cheatgrass has longer roots / extensive surface area / grow deeper;
able to obtain more water;
able to obtain more, minerals / nutrients / ions / salts;
release of inhibitors into soil / allelopathy;
2 max
\mathbf{R} any ref to parts of plants except roots
[Total: 8]

Mark Scheme Page 7 of 10	Unit Code 2804	Session January	Year 2002	Version Final

Expected Answers

4 (a) form / variety / AW, of a gene; unique, nucleotide / base, sequence / AW; A ref to protein product only one can occur at a locus;
occupies same, locus / position, on homologous chromosomes;
produce different effect (on same process / structure / characteristic);
A ref to an example
$\max 2$
allele not expressed in heterozygote / not in presence of dominant / only expressed in homozygous;
correct ref to phenotype;
often no active enzyme is produced;
A use of example, use of symbols
$\max 2$
allele / gene, located on X chromosome;
on non homologous part of X chromosome / not found on Y
chromosome;
only females are carriers;
$\max 2$
(b) If wrong genotypes, only award second and third marking points if correctly derived. i.e. ecf max 2
parental genotypes (XY)b-x (XX)BB;
gametes $\quad b \quad-\quad B \quad(B)$;
genotypes of offspring correct $\mathrm{Bb}(\mathrm{Bb}) \quad \mathrm{B}-(\mathrm{B}-)$;
phenotype(s) linked to genotype(s)
normal female(s), normal male(s);
A all normal
(c) $\quad 25 \% / 1$ in $4 / 1 / 4 / 0.25 ; \quad \mathbf{R}$ ratios

Mark Scheme Page 8 of 10	Unit Code $\mathbf{2 8 0 4}$	Session January	Year 2002	Version Final

Question

Expected Answers
Marks
5 (a) (i) $\mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{A}}$ - low life expectancy; due to malaria;
$\mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{S}}$ - high life expectancy; resistant / AW, to malaria;
$\mathrm{Hb}^{\mathrm{S}} \mathrm{Hb}^{\mathrm{S}}$ - low life expectancy;
due to (severe) anaemia;
(ii) (base sequence of) DNA determines amino acid sequence;
single base / nucleotide, substitution;
CTT to CAT;
ref to transcription / mRNA / translation;
glutamic acid to valine; A correct abbreviations
beta chain;
position 6 in chain;
change in, conformation / 3D shape / tertiary structure, of Hb molecule;
\mathbf{R} shape unqualified
$\max 4$
(b) less / no malaria, in USA; heterozygotes have some, sickling / symptoms; heterozygotes have no selective advantage / selection against Hb^{s}; heterozygotes less likely to, breed / pass on genes; ora $\mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{A}}$
Hb^{S} allele becomes diluted;
by breeding with other populations;
[Total: 14]

Mark Scheme Page 9 of 10	Unit Code 2804	Session January	Year 2002	Version Final

Question
6 (a) E - synaptic cleft / synapse / synaptic gap;
F - postsynaptic membrane;
G - bouton terminal / synaptic knob / synaptic bulb / end button;
H - vesicles / acetylcholine / ACh / (named) transmitter substance;

$$
4
$$

4
(b) 1 depolarisation / action potential / sodium channels open, of presynaptic membrane / axon / cell A; $\quad \mathbf{R}$ impulse
increased permeability to calcium ions / calcium channels open;
calcium ions enter;
(calcium ions cause) vesicles to fuse with, membrane / exocytosis;
acetylcholine / Ach / neurotransmitter, released into cleft;
diffusion across gap;
binds to receptors / proteins;
on post synaptic membrane;
opening of sodium ion channels; \mathbf{R} if ref to potassium channels opening at same time
causes depolarization / sodium ions enter neurone;
11 if reaches threshold value;
12 an action potential is fired; $\quad \mathbf{R}$ impulse is fired
13 ref to role of mitochondria / ATP;
14 AVP; e.g. details on channels or large calcium gradient.
$\max 7$
Q - clear, well organised using specialist terms;
(c) electrical resistance / insulation;
impermeable to sodium / potassium ions;
ref to nodes as sites of depolarisation / movement of sodium and potassium ions;
saltatory conduction / jumps from node to node / increased lengths of local circuits;
fast conduction;
$\max 3$
(d) action potential is fixed in, size / amplitude ;
either produced in full as result of stimulus greater than threshold or not at all;

Marks
[Total:
17]

Mark Scheme Page 10 of 10	Unit Code 2804	Session January	Year 2002	Version Final

Question

7 (a) maintenance of internal environment / named internal examples; at set point / constant / normal level / stable / within normal limits; despite changes in external environment;
$\max 2$
(b) in context of low water content (ora high water content of blood)

1 low water content / potential causes release of ADH;
2 acts on collecting ducts / distal convoluted tubule;
3 ADH binds to, receptors / proteins;
4 activates enzyme in cells;
5 increases the number of water permeable channels / makes membrane or cells more permeable to water;
6 water reabsorbed, into tissue fluid / out of collecting duct / out of DCT;
7 down, water potential / osmotic gradient; A by osmosis;
8 into, blood vessels / vasa recta / blood;
9 high concentration of salts / low water potential, between collecting ducts / in medulla;
ref to role of loops of Henle (in creating high concentration of salts); urine is (more) concentrated / less water lost in urine / AW;
water content of blood restored to normal;
AVP; e.g. action of aldosterone
14 AVP length of loop of Henle and environment slow breakdown of ADH ref to osmoreceptors / hypothalamus
[Total: 9]

