

Subject: Central Concepts Code: 2804

Session: January Year: 2002

Mark Scheme

MAXIMUM MARK	90
--------------	----

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1. Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- 2. Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3. The following annotations may be used when marking. <u>No comments should be written</u> on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
 - x = incorrect response (errors may also be underlined)
 - ^ = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (in cases where candidates contradict themselves in the same response)
 - sf = error in the number of significant figures
- 4. The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Ma Page 3	ork Sc of 10	heme	Unit 28	Code 304	Session January	Year 2002	Ver Fi	sion nal
Abbrevia annotati convent Mark Sc	ations ions a ions (heme	s, Ind used in the	/ = alterr ; = sepa NOT = answ () = word () = (unde ecf = error AW = alterr ora = or rev	native and acceptal rates marking poin vers which are not w s which are not ess erlining) key words carried forward native wording verse argument	ble answers for the ts worthy of credit sential to gain credit which <u>must</u> be use	same marking poi	nt	
Questic	on	Expected	Answers					Marks
1 (a)	(i)	A - glycoly B – (lactat C - aerobio	rsis; e) fermentatio c respiration /	n / anaerobic re Krebs cycle <u>anc</u>	espiration / reduces oxidative phos	ction of pyruvate phorylation / ET	e; ⁻C;	3
	(ii)	C ;						1
	(iii)	A ;						1
(b)	(i)	nucleus, ri <i>If more tha</i>	bosomes; (<u>bo</u> an two mentior	th for mark) ned score zero				1
	(ii)	pyruvate is in cytoplas glycolytic e pyruvate o no carriers carbon dio and link re decarboxy	s end product sm / cytosol; enzymes not ir an enter mitoos for glucose (oxide produceo eaction; lation / decarb	of glycolysis; n mitochondria; chondria / gluco in mitochondria d in Krebs cycle poxylase(s);	A glucose to py se cannot; I membranes); ;	ruvate		
		can refer t	o pathways A,	B and C				max 3
	(iii)	cyanide pr oxidati reduced N no dehydr Krebs cycl lactate is p occur accept does not in	revents, oxidat on of glucose AD not oxidise ogenation / no le stops / no d produced in cy / only anaerob tor; nvolve, cytoch	ive phosphoryla / AW, taking pla ed / AW; o oxidation; ecarboxylation; toplasm / lactat ic respiration ca romes / ETC / c	ation / aerobic re ace; R ETC / cy e pathway can c an occur / pyruva	espiration / full ytochromes occur / only B ca ate acts as H orylation;	an	max 3
		enzymes i	n cytoplasm n	ot inhibited by c	yanide;	<i>.</i> .		_
(c)		carbon dic	oxide, ethanol;	(both for mark)	R ethanal, alco	hol [Total:	1 13]

Mark Scheme		Unit Code	Session	Year	Version	
Page 4 of 10		2804	January	2002	Final	
Question	Expected	Answers			Marks	

2	(a)	(i)	X - stroma;	
			Z - starch (grain); <i>ignore references to lipid</i>	3
		(ii)	label line to a granum / thylakoid / lamella;	1
	(b)	1	large surface area of chloroplast, qualified; e.g. biconvex shape	
		2	grana / thylakoid(s) (membranes), give large surface area;	
		3	site of, light dependent reactions / photophosphorylation;	
		4	ref to energy, transduction / conversion;	
		5	chlorophyll / pigments, for light absorption / lose excited electrons;	
		6	ref to wavelengths absorbed by chlorophyll (blue + red or 450 + 680 nm);	
		7	ref to (orientation of) chlorophyll in membrane;	
		8	other photosynthetic pigments / named pigment(s);	
		9	absorb different wavelengths of light;	
		10	arranged into photosystems / light harvesting complexes (or clusters); A quantasomes;	
		11	chlorophyll (a) molecule at centre of, photosystem / reaction centre;	
		12	pigments 'funnel' electrons to centre of photosystem (idea of antennae / AW);	
		13	electron carriers / ETC system, in membrane;	
		14	proton pumps / chemiosmosis / ref to movement of hydrogen ions / protons into thylakoid space / AW;	
		15	ATP production / synthetase / ATP ase;	
		16	NADP present;	
		17	Calvin cycle / light independent stage, enzymes in stroma;	
		18	ref to rubisco;	
		19	ref to storage of starch or lipid;	
		20	ref DNA / ribosomes, making proteins;	
		21	AVP; e.g. double membrane qualified	
			photosystem 1 and 2 have different absorption peaks	max 7
			Q – legible text with accurate spelling, punctuation and grammar;	1
				max 8
	(c)	(i)	GP to Q step; RuMP to RuBP step;	2
		(ii)	rubisco / ribulose bisphosphate carboxylase;	1
		/!···		
		(111)	GALP / PGAL / those phosphate / TP;	1

Mark Scheme		Unit Code	Session	Year	Version
Page 5 of 10		2804	January	2002	Final
(iv) proteins / polypeptides / named protein lipids / oils / fats; DNA / RNA / pucleic acids;		ein;			

chlorophyll;

2

[Total: 18]

Mark Scheme	Unit Code	Session	Year	Version	
Page 6 of 10	2804	January	2002	Final	

Question		ı	Expected Answers	Marks
3	(a)		(members of) same species / named species; (compete for) same resource / named resource;	2
	(b)	(i)	Mark each conclusion separately. Must refer to roots in any conclusion. One mark for statement and second mark for supporting data from table.	
			cheatgrass has longer roots than wheatgrass (when grown separately / always);	
			wheatgrass has reduced root growth in presence of cheatgrass / ora; as proportion of cheatgrass increases root length of wheatgrass decreases; wheatgrass encourages growth of cheatgrass / AW:	
			in mixture with highest proportion of cheatgrass, cheatgrass roots decrease in length;	
			ref to figures;;	
				2 + 2
		(ii)	cheatgrass has longer roots / extensive surface area / grow deeper; able to obtain more water;	
			able to obtain more, minerals / nutrients / ions / salts; release of inhibitors into soil / allelopathy;	2 max
			R any ref to parts of plants except roots	

[Total: 8]

Mark Page 7 of	Scheme 10	Uni 2	t Code 804	Session January	Year 2002	Version Final		
Question	Expected	Answers				Marks		
4 (a)	form / vari unique, nu only one c occupies s produce di A ref	form / variety / AW , of a <u>gene;</u> unique, nucleotide / base, sequence / AW; A ref to protein product only one can occur at a locus; occupies same, locus / position, on homologous chromosomes; produce different effect (on same process / structure / characteristic); A ref to an example						
	allele not e expres	expressed in I sed in homoz	neterozygote / r zvgous:	not in presence o	f dominant / o	nly		
	correct ref often no a A u	to <u>phenotype</u> ctive enzyme se of example	is produced; e, use of symbo	bls		max 2		
	allele / ger on non ho chrom only femal	ne, located on mologous par osome; es are carrier	a X chromosoma t of X chromosa s;	e; ome / not found c	on Y	max 2		
(b)	lf wrong go derived. i.e	enotypes, on l e. ecf max 2	ly award secon	d and third marki	ng points if cor	rectly		
	parental g	enotypes ((XY) b - x (X)	X) BB;				
	gametes		b -, B (B	3);				
	genotypes	of offspring of	correct Bb (Bb)	B - (B -);				
	<i>phenotype</i> normal fer	e(s) linked to g nale(s), norm	genotype(s) al male(s);					
	A all norm	al				4		
(c)	25% / 1 in	4 / ¼ / 0.25;	R ratios			1		
					[Total: 11]		

Pa	Maı ge 8 d	rk Sc of 10	heme	Unit 28	Code 04	Session January	Year 2002	Version Final
Qu	estio	n	Expected	Answers				Marks
5	(a)	(i)	Hb ^A Hb ^A – due to ma	low life expecta laria;	ancy;			
			Hb ^A Hb ^S – resistant /	high life expect AW, to malaria	ancy; i;			
			Hb ^S Hb ^S - due to (se	low life expecta vere) anaemia;	ancy;			6
		(ii)	(base seq single bas CTT to CA ref to trans glutamic a beta chain position 6 change in	uence of) DNA e / nucleotide, AT; scription / mRN cid to valine; a; in chain; , conformation /	determines ar substitution; A / translation; A correct a / 3D shape / te R shape u	nino acid sequer bbreviations ertiary structure, nqualified	nce; of Hb molecule;	
	4.)		. ,					max 4
	(D)		heterozygo heterozygo heterozygo Hb ^S allele by breedir	otes have some otes have no se otes less likely becomes dilute ng with other po	; e, sickling / syr elective advant to, breed / pas ed; ppulations;	nptoms; tage / selection a s on genes; ora	against Hb ^S ; Hb ^A Hb ^A	max 4

[Total: 14]

Mark Scheme	Unit Code	Session	Year	Version
Page 9 of 10	2804	January	2002	Final

Question		on	Expected Answers				
6	(a)		 E - synaptic cleft / synapse / synaptic gap; F - postsynaptic membrane; G - bouton terminal / synaptic knob / synaptic bulb / end button; H – vesicles / acetylcholine / ACh / (named) transmitter substance; 	4			
	(b)	1 2 3 4 5 6 7 8 9 10 11 12 13 14	 depolarisation / action potential / sodium channels open, of presynaptic membrane / axon / cell A; R impulse increased permeability to calcium ions / calcium channels open; calcium ions enter; (calcium ions cause) vesicles to fuse with, membrane / exocytosis; acetylcholine / Ach / neurotransmitter, released into cleft; diffusion across gap; binds to receptors / proteins; on post synaptic membrane; opening of sodium ion channels; R if ref to potassium channels opening at same time causes depolarization / sodium ions enter neurone; if reaches threshold value; an action potential is fired; R impulse is fired ref to role of mitochondria / ATP; AVP; e.g. details on channels or large calcium gradient. 	max 7			
			Q – clear, well organised using specialist terms;	1 max 8			
	(c)		electrical resistance / insulation; impermeable to sodium / potassium ions; ref to nodes as sites of depolarisation / movement of sodium and potassium ions; saltatory conduction / jumps from node to node / increased lengths of local circuits; fast conduction;	max 3			
	(d)		action potential is fixed in, size / amplitude ; either produced in full as result of stimulus greater than threshold or not at all;	2			
			[Total:	17]			

Mark Scheme	Unit Code	Session	Year	Version
Page 10 of 10	2804	January	2002	Final

Question		Expected Answers	Marks
7	(a)	maintenance of internal environment / named internal examples; at set point / constant / normal level / stable / within normal limits; despite changes in external environment;	max 2
	(b)	in context of low water content (ora high water content of blood)	
	1	low water content / potential causes release of ADH;	
	2	acts on collecting ducts / distal convoluted tubule;	
	3	ADH binds to, receptors / proteins;	
	4	activates enzyme in cells;	
	5	increases the number of water permeable channels / makes membrane or cells more permeable to water;	
	6	water reabsorbed, into tissue fluid / out of collecting duct / out of DCT;	
	7	down, water potential / osmotic gradient; A by osmosis;	
	8	into, blood vessels / vasa recta / blood;	
	9	high concentration of salts / low water potential, between collecting ducts / in medulla;	
	10	ref to role of loops of Henle (in creating high concentration of salts);	
	11	urine is (more) concentrated / less water lost in urine / AW;	
	12	water content of blood restored to normal;	
	13	AVP; e.g. action of aldosterone	
	14	AVP length of loop of Henle and environment	
		SIOW DIEAKOOWN OT ADH	max 7
		rei to osmoreceptors / nypotnalamus	παλ Ι

[Total: 9]