Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE

In Biology (6BIO1) Paper 01
Lifestyle, Transport, Genes and Health

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 6BIO1_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question
 Number | Answer |
| :--- | :--- | :--- |
| $\mathbf{1 (a) (i)}$ | $\mathbf{1 (a) (i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~ - ~ i n f e c t i o n ~}$ |
| \boldsymbol{A} is not correct because blood clotting would contribute to atherosclerosis | |
| \boldsymbol{B} is not correct because blood clotting may increase blood pressure | |
| D is not correct because blood clotting has no impact on body mass so will have no effect on
 obesity | |

Question Number	Answer	Mark
$\mathbf{1 (a) (i i)}$	$\mathbf{1 (a) (i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~ - ~ c e l l ~ f r a g m e n t s ~}$	
	\boldsymbol{A} is not correct because platelets are not antibodies - they do not attach to antigens	
\boldsymbol{B} is not correct because platelets are not antioxidants		
\boldsymbol{D} is not correct because platelets are not enzymes	(1)	

Question Number	Answer	Mark
1(a)(iii)	1(a)(iii). The only correct answer is \mathbf{D} - an insoluble protein \boldsymbol{A} is not correct because fibrin is not soluble, it forms insoluble fibres \boldsymbol{B} is not correct because fibrin is a polypeptide so consists of many different amino acids joined together \boldsymbol{C} is not correct because fibrin is not an enzyme	(1)

Question Number	Answer	Mark
$\mathbf{1 (a) (i v)}$	$\mathbf{1 (a) (i v) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~ - ~ a n ~ e n z y m e ~}$	
	\boldsymbol{A} is not correct because thrombin is a protein made from prothrombin in the blood plasma	
\boldsymbol{B} is not correct because thrombin is a globular protein		
\boldsymbol{D} is not correct because thrombin is a protein in the plasma not a compartment/structure		
within a cell		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (b) (i)}$	1. \{vasoconstriction / nicotine \} causes high (blood) pressure / eq ;		
2. increased damage to \{ endothelium / walls \} of arteries			
;			
3. (increases the) risk of \{atheroma / atherosclerosis /			
eq\};			
4. idea of positive feedback ;	ACCEPT inflammatory response, description of process		(3)

Question Number	Answer	Additional Guidance	Mark
1 (b) (ii)	1. antihypertensive drugs / eq ; 2. vasodilation / reduce heart rate / eq ; 3. reduce \{blood pressure / atheroma / atherosclerosis / damage to endothelium / eq\} ; OR 4. statins / eq ; 5. lower blood cholesterol levels / eq ; 6. reduces risk of atherosclerosis / eq ; OR 7. anticoagulant drugs / platelet inhibitory drugs / eq ; 8. reduce risk of blood clot forming / eq ; 9. reduces risk of atherosclerosis / eq ;	NB: Drug type needs to be correctly matched to the description of how it works. 1. ACCEPT ACE inhibitors / calcium channel blockers / diuretics / beta blockers / named example 3. NOT reduce risk of CVD / blood clots 4. ACCEPT stanols / sterols / named example 6. NOT reduce risk of CVD / blood clots 7. ACCEPT named example 9. NOT reduce risk of CVD	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 (a) (i)}$	hydrolysis;		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 (a)}$ (ii)	(a 1,4 / a 1,6) glycosidic ;	NOT β	

Question Number	Answer	Additional Guidance	Mark
2(b) (i)	no \{starch / substrate \} left / eq ;		

Question Number	Answer	Additional Guidance	Mark
2(b) (ii)	1. more \{kinetic energy / movement / eq\} ; 2. more \{collisions / enzyme substrate complexes formed / eq \} ;		

Question Number	Answer	Additional Guidance	Mark
2(b) (iii)	1. steeper curve to the left of $23^{\circ} \mathrm{C} ;$ 2. graph levels off at the same height as the other two lines;	NOT above max quantity produced	(2)

Question Number	Answer	Additional Guidance	Mark
2(b) (iv)	1. range of amylase concentrations used / eq ; 2. control \{volume / concentration \} of starch ; 3. method of controlling temperature at $23^{\circ} \mathrm{C}$ e.g. temperature controlled water bath ; 4. \{record / compare \} initial rate of reaction / description of how dependent variable measured ;	4. e.g. quantity of maltose produced, time for starch to be completely broken down	(4)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{3 (a)}$	Difference 1. active transport requires \{ energy / ATP\} whereas facilitated diffusion does not / eq OR 2. active transport \{ moves molecules against the concentration gradient / eq \} whereas facilitated diffusion allows molecules to \{ move down the concentration gradient / eq \} ; Similarity 3. both use proteins ;		

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| 3(b) | Vitamin C :
 1. polar / ionic ;
 2. cannot pass through \{phospholipid bilayer / hydrophobic
 region / eq\} / uses protein \{channels / carriers \}; | |
| Vitamin D:
 3. non polar ;
 4. will dissolve in phospholipid bilayer / eq ; | 1. ACCEPT charged | |

Question Number	Answer	Additional Guidance	Mark		
3(c)	1. water will move out of cells by osmosis;	1. IGNORE diffuse			
	2. to an area of higher solute concentration;	4. ACCEPT lower water potential / higher salt concentration	5. ACCEPT cells will shrink	\quad (3)	3. idea that cell volume will reduce ;
:---					

Question Number	Answer	Additional Guidance	Mark
4(a)	1. provides a large surface area;		

Question Number	Answer	Additional Guidance	Mark
4(b)	1. brings \{ oxygen to / carbon dioxide away from \} exchange surface; 2. maintains \{concentration / diffusion\} gradient / eq ;	ACCEPT alveoli / lungs	

Question Number	Answer	Additional Guidance	Mark
4(c)	1. provides a large surface area ; 2. movement of blood maintains \{concentration / diffusion\} gradient ; 3. capillaries have a thin wall / short diffusion pathway / eq ; 4. brings \{ carbon dioxide to / oxygen away from \} exchange surface ; 5. reference to \{ haemoglobin / red blood cells / erythrocytes / respiratory pigment \} to carry oxygen ;	3 IGNORE one cell thick NOT cell wall 4 ACCEPT alveoli / lungs	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{5 (a) (\mathbf { i })}$	deoxyribose ;		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{5 (a) (\text { ii) }}$	$5 ;$		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{5 (a) (\text { iii) }}$		NOT thiAmine or thyAmine	
	thymine ;	ACCEPT thimine / thimyne	

Question Number	Answer	Mark
$\mathbf{5 (b) (\mathbf { i })}$	$\mathbf{5 (b) (i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ B ~ - ~ l e t t e r ~ Q ~}$	
	\boldsymbol{A} is not correct because P is a ribosome	
	\boldsymbol{C} is not correct because R is a tRNA molecule with a distinctive shape	
\boldsymbol{D} is not correct because S is an anticodon part of the tRNA molecule		

Question Number	Answer	Mark
$\mathbf{5 (b) (i i)}$	$\mathbf{5 (b) (i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~ - ~ l e t t e r ~ S ~}$	
	\boldsymbol{A} is not correct because Q is an mRNA molecule that has codons not the anticodons	
	\boldsymbol{B} is not correct because R is not the part of the tRNA molecule that will bind with the mRNA	
	\mathbf{D} is not correct because T is the codon on the mRNA molecule	

Question Number	Answer	Mark
$\mathbf{5 (b) (\text { iii) }}$	5(b)(iii). The only correct answer is C - peptide bonds \boldsymbol{A} is not correct because they are not called amino bonds, because the amino group is only one of the groups bonded together	
B is not correct because hydrogen bonds because a covalent bond is formed \boldsymbol{D} is not correct because phosphodiester bonds do not form between amino and carboxyl groups, no phosphate is involved	(1)	

Question Number	Answer	Additional Guidance	Mark
5(b) (iv)	translation;		(1)

Question Number	Answer	Additional Guidance	Mark
*5(c)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. idea that DNA used as a template to make mRNA ; 2. reference to RNA polymerase ; 3. reference to complementary base pairing / examples provided ; 4. idea that triplet of DNA bases makes one codon ; 5. one codon codes for one (specific) amino acid / eq ; 6. the primary structure is the sequence of amino acids / eq;	QWC - emphasis on logical sequence. 1. ACCEPT Idea that one gene codes for one polypeptide 4 \& 5 combined allow one mark for triplet of DNA codes for one amino acid	(4)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (a)}$	Diagram showing: 1. correct R group $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$ connected to central C atom ; 2. NH_{2} connected to central C atom ; 3. H and COOH connected to central C atom ;		

Question Number	Answer	Additional Guidance	Mark
6 (b) (i)			
	1. one amino acid changed / eq ; 2. idea of a change in one \{ triplet / codon \} ; 3. substitution of one base ;	3. ACCEPT idea that other mutations involving \{more than one base / addition / deletion\} may \{ change whole sequence / missing amino acids / eq \} ;	(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (b) (\text { ii) }}$	1. (one) different R group / eq ; 2. Idea that they have different charge e.g. one is polar other is non-polar ; 3. different bonds formed ; 4. different \{ tertiary structure / bonding to other molecules / affinity to oxygen / eq \};	1. IGNORE different sequence of R groups	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (c) (i)}$	1. capillary has a narrower lumen than an artery / eq ;	ACCEPT capillary has a narrow lumen / small diameter / eq	

Question Number	Answer	Additional Guidance	Mark
6 (c) (ii)	1. less oxygen reaches tissues / eq ; 2. \{ less / no \} (aerobic) respiration possible / eq ; 3. cell \{ damage / death \} / eq ;	2. ACCEPT more anaerobic respiration 3. ACCEPT idea that lactic acid causes pain	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{7 (a) (i)}$	1. $5 \mathrm{dm}^{3}=5000 \mathrm{~cm}^{3} ;$	correct answer scores 2	
	2. $\frac{5000}{200}=25(\mathrm{~min}) ;$		(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{7 (a) (\text { ii) }}$	diffusion;		

Question Number	Answer	Additional Guidance	Mark
7(a)(iii)	1. removes \{waste / excess/ eq\} \{ urea / water / salts / eq \} ;		
2. ensures that dialysis fluid has a lower concentration of \{urea / eq\} than the blood / eq ; 3. maintains concentration of \{ glucose / salt \} in the blood / eq ;		(2)	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{7 (b)}$	1. increased risk of \{ higher blood cholesterol / cholesterol deposits / eq \}; 2. leading to formation of \{atheroma / plaque / atherosclerosis / eq \} ;	1. ACCEPT LDL for cholesterol	
	3. increased risk of blood clot formation / eq ; 4. loss of elasticity of artery / narrowing of lumen / eq ; 5. idea of causing increase in blood pressure ;	4. ACCEPT \{hardening / narrowing / blocking / eq \} of artery 5. IGNORE heart attack	(4) ACCEPT thrombus

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (a)}$	$1 .(7-9) \div 9 ;$	Correct answer gains 2 marks	
	$2 .-0.22 \times 100=-22.2 \% ;$	ACCEPT $-22 \%, 22.2 \%$ and 22%	$(\mathbf{2)}$

Question Number	Answer	Additional Guidance	Mark
*8(b)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. energy requirement increases with age up to age \{15 / 15 to17 / 18 / 18 to 34 / 18 to 54\} ; 2. for both men and women ; 3. energy requirement decreases \{for older age groups / above 55 / above 65 / eq\} ; 4. Energy requirement depends on activity level as well as age ; 5. Idea that you need to compare ages with the same activity levels ; 6. Energy requirements depend on body size ; 7. idea that energy requirements (BMR) depends on the number of cells to be supplied ; 8. suitable manipulation of figures to illustrate points made ;	QWC emphasis is on clarity of expression 2. ACCEPT increase is greater for men than women 3. ACCEPT metabolism decreases with age	(5)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (c)}$	1. idea of energy imbalance ; 2. calculation of imbalance for boys and girls $=0.5$ for boys and 1.5 for girls (MJ day ${ }^{-1}$) ; 3. (leading to) gain in weight / development of obesity / eq ; 4. (due to) storage of \{fat / glycogen\} ;	1. ACCEPT excess energy intake	

