

Examiners' Report June 2013

GCE Biology 6BI01 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit www.edexcel.com/resultsplus. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk.

June 2013

Publications Code US035460

All the material in this publication is copyright

© Pearson Education Ltd 2013

Introduction

This paper tested the knowledge and understanding of the two AS topics: 'Lifestyle, health and risk' and 'Genes and health', together with elements of How Science Works. The range of questions provided plenty of opportunity for candidates to demonstrate their grasp of these AS topics. On the whole, candidates coped extremely well with this paper, finding most of the questions straightforward to tackle; indeed there were very few examples of questions not being attempted at all, with all questions achieving the full spread of marks.

It was good to see how well many candidates could recall several areas of the specification in a good level of detail, including the core practical for measuring the concentration of vitamin C. It was also very pleasing to see very few candidates losing marks for poor quality of written communication (QWC) with answers often set out in a logical style with key biological terms spelt correctly.

Some candidates let themselves down by not reading the questions carefully enough, or by providing a response without the precision required at this level.

Many candidates have clearly made good use of past papers and mark schemes, but it is important for candidates to understand the scientific principles covered in the specification so they can apply them to new contexts and not write a rehearsed answer to a question that has been asked in the past. For example, many candidates described the process of protein synthesis rather than DNA replication for Q2(a) as this is something that has been asked on recent papers.

Candidates also need to check their answers for sense. For example why spend all of your time describing the double circulatory system in detail when you are asked to describe why many animals need a heart and circulatory system?

It was very pleasing to see many examples of excellent responses; often being concise, clear and comprehensive, showing a good use of technical terms and biological names.

Question 1(a)

Many candidates scored well in this question and clearly knew the steps involved in blood clotting. Unfortunately marks were sometimes lost by spelling errors that meant the words were not unambiguous. One of the more common errors was to confuse white blood cells and platelets. Candidates who were unfamiliar with the blood clotting process were usually able to get a mark for the word "enzyme" as being the catalyst. It was disappointing to see fibrin and fibrinogen given as answers since these were already referred to in the text.

1	(a)	Read through the following passage on the blood clotting process, then write on the dotted lines the most appropriate word or words to complete the passage.		
		The blood clotting process starts when cell fragments calledp\o_t\o_t\o_t\o_	- 2	
		release molecules of These molecules		
		are which catalyse the conversion of _protruomlanin		
		into, in the presence of calcium ions. As a result, fibrinogen	1 Court	
		is converted into fibrin and blood cells are trapped to form the clot.	STATE OF THE STATE	

This is an example of a response that gained three of the five marks available.

1 (a) Read through the following passage on the blood clotting process, then write on the dotted lines the most appropriate word or words to complete the passage.

(5)

The blood clotting process starts when cell fragments called Throughout release molecules of white hand all . These molecules are waynes which catalyse the conversion of Prothesian into the conversion of prothes

The candidate clearly knows many of the terms involved in the blood clotting process. However, they have made mistakes with the first two responses.

For fill in the blanks questions make sure you read back over your response in the context of the whole passage to make sure it makes sense.

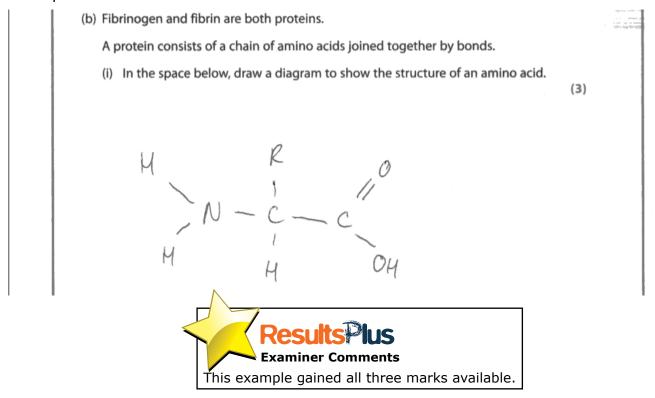
This response gained three of the five marks available.

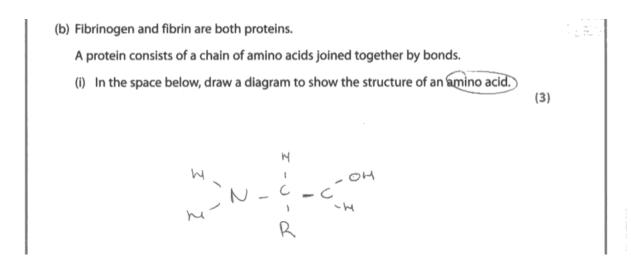
1 (a) Read through the following passage on the blood clotting process, then write on the dotted lines the most appropriate word or words to complete the passage.

(5)

The blood clotting process starts when cell fragments called placely release molecules of two mooplach. These molecules

are enzymes which catalyse the conversion of fibrinogen into fibrin and blood cells are trapped to form the clot.

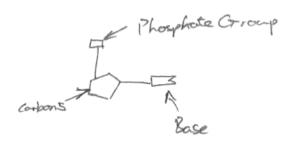

The first three answers are correct, but this candidate made the common mistake of including fibrinogen and fibrin as the last responses, despite those molecules being used in the sentence immediately afterwards.


Read through the complete passage to help guide what will be the most appropriate words to use. The passage is unlikely to repeat itself so it is best not to repeat words as they are unlikely to be the most appropriate to use.

Question 1(b)(i)

Over 50% of candidates gained all three marks for the structure of an amino acid. The most common errors were to miss the hydrogen attached to the central carbon, or make bonding errors for the carboxyl or amino group. Some candidates named the groups instead of drawing the structure as requested. Several candidates tried to draw nucleotides and a few attempted a modified monosaccharide.

This response scored two of the three marks available.


This is a typical example of a candidate who lost a mark for an error in the carboxyl group.

• (b) Fibrinogen and fibrin are both proteins.

A protein consists of a chain of amino acids joined together by bonds.

(i) In the space below, draw a diagram to show the structure of an amino acid.

(3)

This is an example of the many responses seen where the candidate drew a nucleotide rather than an amino acid. This is also a model rather than a structural diagram of the molecule.

When asked to draw the structure of a molecule, make sure you show the relevant atoms and bonds, particularly for functional groups.

Question 1(b)(ii)

Few problems with this question as over 80% of candidates recognised that amino acids are joined with a peptide bond. The most common error was naming a glycosidic bond instead.

(ii) Name the covalent bond that joins the amino acids into a chain.

(1)

Peptide

(ii) Name the covalent bond that joins the amino acids into a chain.

(1)

hydrogen bond

This is an example of an incorrect bond type. There are hydrogen bonds in a protein, but they are not covalent bonds and are not the principle bonds joining the amino acids together into a chain.

(ii) Name the covalent bond that joins the amino acids into a chain.

(1)

Polypeptide Bond

This response did not gain the mark as polypeptide is not the name of the bond but the molecule that is produced.

Question 1(b)(iii)

Many candidates gained one mark for recognising the different solubilities of the proteins. Better responses also recognised that the proteins were either globular or fibrous, or were different sizes. Several candidates got the two molecules the wrong way round and many did not make comparative comments by only referring to just one of the proteins. Many candidates gave low level descriptions of functions e.g. fibrin traps red blood cells, fibrinogen is an enzyme.

(iii) Suggest two differences between fibrinogen and fibrin. (2)
1 franta fibrintogen is soluble whereas
Abrin is insoluble
2 from molecules have a long,
Romous strand structure whereas
filonnogen is a globular protein
(Total for Question 1 = 11 marks)

This is an example of a response that gained both available marks.

This response scored no marks.

(iii) Suggest two differences between fibrinogen and fibrin.	(2)
1 Dibin are long strand	()
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	niopan-unio
2 filmy needs to be the calculated	X

Fibrin and fibrinogen. If they had stated that fibrin was long and fibrinogen was much shorter they would have gained a mark. Similarly if they had said that fibrinogen is a globular protein in comparison to this first statement they would have been given the mark even though it lacks some precision.

When asked for a difference between two things make sure you mention both in your response for a clear comparison.

Question 2(a)

This question specifically relates to specification point 2.12 'Explain the nature of the genetic code'. It was therefore disappointing to see how many candidates failed to pick up on the basic idea of the triplet code.

Many answers were general descriptions of genes controlling protein synthesis, references to alleles providing hereditary information, the structure of DNA, chromosomes, etc. Details of the structure of the DNA molecule were common also.

Where candidates did identify the importance of bases they often referred to the sequence coding for amino acids rather than specifically 3 bases coding for one amino acid. Some candidates thought that one triplet codes for one protein.

A significant number of candidates thought that the sequence of amino acids on the DNA was the genetic code.

Where the bases were listed, candidates often just referred to A, T, C and G (it should be noted that the full names are included as part of the specification) or made errors in the names e.g. glycine instead of quanine.

This response gained both marks available.

2	DNA is a very important molecule in living organisms as it carries the genetic code. Before a cell divides, the DNA molecule replicates so that each resulting daughter cell is genetically identical to the original parent cell.									
	(a) Exp	plain t	he nature	of the gene	etic code.					(2)
										(2)
	The	9	renetic	code	Ž.	α	hiple	t 100	1€.	The
	rene ti	C	wae	2,	Linear		aud	ИОИ	0	verlopping.
44117.11	kna	-Me	90	netic	wde	missim	can	Бе	ofe	generated,
	more		Kon	one	00d611	Cal	u ode	pr	тe	amino
6	acid	#			***************************************				******	(

This is an excellent response that goes beyond the scope of the AS specification as they have actually made five relevant comments about the nature of the genetic code in a concise response.

This response gained no marks.

2 DNA is a very important molecule in living organisms as it carries the genetic code. Before a cell divides, the DNA molecule replicates so that each resulting daughter cell is genetically identical to the original parent cell.

(a) Explain the nature of the genetic code.

(2)

The genetic code contains the gas genes that are responsible for the providing instructions in making a protein and corrying information from one open arabon to another.

This is a typical example of a candidate who does not understand the meaning of the specification term 'genetic code'.

The genetic code is the language of the genes and is an important specification point. Make sure you understand the triplet nature of the code - 3 DNA bases code for one amino acid.

Question 2(b)

This was generally well answered with a significant number of candidates addressing at least 5 marking points successfully. The best responses demonstrated an understanding of semi conservative replication and bonding within the DNA molecule, with several candidates demonstrating knowledge beyond the AS specification.

It was very pleasing to see that spelling of key terms was good, and we rarely saw mistakes.

It was a common omission that the nucleotides line up along both strands – often only referring to complementary base pairing to one of the strands.

Unfortunately, many candidates confused DNA replication with protein synthesis and lost by describing stages of transcription or translation instead.

This response gained all five marks available.

*(b) Describe the process of DNA replication.	(=)
- called	(5)
It is a semi-conservative replication - where	
DNA are produced which are exact replicate	eds of the
DNA are produced which are exact replicate original parent DNA. Istrand DNA, I str	and is of
from original DNA while the other is new . The	DNA double
helix unwinds, firstly, exposing to buses, DNA he	licase
enzyme is involved Tese strands acts as	
where free minononucleotides in the nucleus/cyte	oplasm pairs
off (complementary base pairing-with corresspond	ing base of
the DNA-strange A-T, h-C. Hydrogen bonds place between the bases and later phosphoseli	ng tak ts
place between the bases and later phosphosti	ester
is formed with deoxyribose pentose sugar and ph bond with a phosphate group. The Between Between these mononucleotides condensation	osphodiester
bond with a phosphate group. The Between	tron J
Between these mononucleotides condensation (Total for Question)	2 = 7 marks)
takes place with the help of DNA polymerass of	and DWA ligose.
takes place with the help of DNA polynerase of As a result 2 new strands are formed.	

Álthough not all aspects of this response are perfect, this is an example of many candidates who had a very good grasp of the process of replication. The stages are clear, they understand the term semi-conservative and are aware of examples of enzymes and chemicals and bonds involved.

This response gained one of the five marks available.

*(b) Describe the process of DNA replication.

(5)

The DNA molecular molecular contains town shoulds this This stand

The DNA molecular molecular unminds those itself after which the

time time strands are separated. After these time she strands are

one separated, the the alleles in the DNA strand forms are

apposite allele that goes with furth the original one Once the alleles

one formed, the DNA strand gets together and so into itself, see revening two new DNA's DNA's powed:

This candidate gained a mark for recognising that the DNA unwinds at the beginning. They have not included much specific detail and have confused some of their key terms such as alleles and nucleotides.

When revising biochemical processes like replication, make sure you learn the molecules involved in the process as it will help you gain credit at AS/A2 level.

This response gained two of the five marks available.

The transcription is the process of transcription and Translation.

The transcription the DNA unwinds and and the Hydrogen bond are exposed as RNA polymerase helps to break them up. One strand acts as a longitude. Complementary has place in the nucleus translation takes place in the cytoplasm.

The mPNA line up against the DNA strand and complementary hase pairing occurs different triplet-codes.

Code for different amino acid. A movember of them takes the amino acid. A movember of them takes the amino acid. A movember of them takes the amino acid. A movember of them to plasm back into the nucleus.

This is a typical example of a candidate describing the wrong process. However, they gained credit for recognising a relevant enzyme and that DNA needs to unwind as there are some similarities in the process of replication and transcription.

Read the question carefully and make sure you write about the correct process and not a process that was asked for in a previous exam. Question 3(b)(i)

Q3(a): Most candidates had few difficulties with the multiple choice questions about lipid hydrolysis with between 70 and 90% correct response rates for each item. The most common errors were to think that catalysts increase the rate of reaction by increasing the activation energy; water is formed in a hydrolysis reaction; and glycosidic bonds are found in triglycerides.

Q3(b)(i): This question was well answered with most candidates interpreting the data well and relating it to which components are associated with risks of developing CVD.

This response gains both of the available marks.

(i)	Give two reasons why the information in the table does not support this suggestion. (2)
1 LL	OL chloestered is lower in people with the abion than those without.
mul	ation than those without.
2 HP	l cholosterol is higher in people with the ation than those without.
mut	ation than those without

Correct comparisons have been made with LDL and HDL levels, both of which have an influence on the risk of developing CVD.

This response gains both available marks.

(i) Give two reasons why the information in the table does not support this suggestion.

(2)

1 be use the runned of the challstrate is

A rey and difference by the western

people with mutation, a people with mutation.

2 Total challenge is larger than which would love the chart of civil and covered the covered

Results lus
Examiner Comments

As well as the correct statement about total cholesterol, they recognise that the key factor is that the differences are very small (particularly for HDL).

This response did not gain any marks.

(i) Give two reasons why the information in the table does not support this suggestion.

(2)

1 There are more people without the mutation of the gene that have a higher total cholesterol than those with the mutation.

The statement made is not possible to conclude from the data in the table as there is no indication about the cholesterol levels of individuals within the groups.

This response failed to gain any marks.

(i) Give two reasons why the information in the table does not support this suggestion.

(2)

1 LDL chloesterel is lower in people with the mutation than those without.

2 HDL cholusterel is higher in people with the mutation than those without.

The first statement is wrong from the data in the table. The second statement is not worthy of credit as they have said that total cholesterol is reduced. This is not a clear comparative statement with those without the mutation and we have no indication in the data about changes in the lipid levels within the populations, just comparative mean values.

Make sure statements are comparative and think carefully over the appropriate use of words such as lower and reduced as they have different meanings and suit different contexts.

Question 3(b)(ii)

The majority of candidates recognised that statins would be the suitable drug type to use in the context of this mutation. However, a significant number of candidates did mention anticoagulants.

This is an example of the correct response.

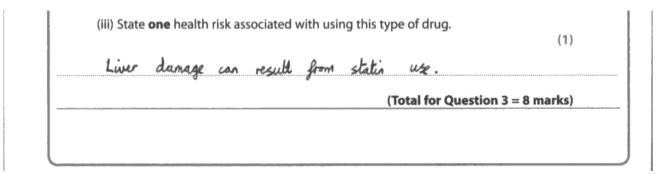
	(ii) Name the type of drug that could be given to people with this mutation, to reduce the risk of developing CVD.	
	Saltis	(1)
1		

This is an example of an incorrect response that did not gain the mark.

(ii) Name the type of drug that could be given to people with this mutation, to reduce the risk of developing CVD.

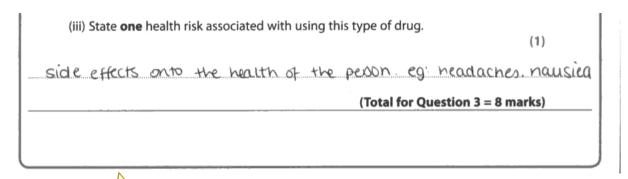
(1)

Beta dockers.


Check the context of the question carefully. The mutation in this question is linked to lipid levels in the blood so the most appropriate drugs will be those that might help reduce cholesterol levels in the blood.

Question 3(b)(iii)

With such a long list of possible side effects of statin use most candidates were able to gain credit, most for liver, kidney or muscle issues. The most common errors were to state that statins increase the risk of cancer or reduce the absorption of vitamins from the digestive system.


Candidates were asked to state **one** health risk, but many provided a list of risks instead.

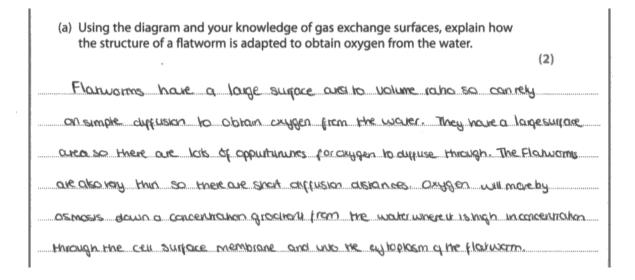
This response gained the mark.

This response gained the mark.

This candidate has recognised some side effects as risks and gained credit. However, the question did ask for **one** health risk and not two.

If a word is in bold in a question stem take careful note.

(iii) State one health risk associated with using this type of drug.	(1)
Could prevent intamins being absorbed by liver.	
(Total for Question	3 = 8 marks)


This is an example of one of the most common responses that did not gain the mark.

Question 4(a)

Many candidates recognised that flatworms have a high surface area to volume ratio and/or that the body is very thin, together with how this related to diffusion. Candidates who lost marks just referred to gas exchange and not diffusion or surface area alone.

Some candidates simply stated that a flatworm is flat which was not deemed worthy of credit. Other candidates referred to thin cell membranes or even thin cells walls.

This response gained both available marks.

The candidate has recognised both the surface area to volume ratio and the thin body to aid the diffusion of oxygen, including explaining that it is helped due to the short diffusion path.

However, the statement re. oxygen moving by osmosis at the end is clearly wrong and an error by the candidate.

Remember osmosis is the name given to the diffusion of water and is not used to describe the movement of other molecules and ions. This response gained no marks.

			gas exchange surfac tain oxygen from th		n how	
	-					(2)
they hav	ie a	thin	membrane	to	4	allow
diffusion	of Oxyge	n to	their bodies -	they	have	also
alote of	mito	chondir	a to pro	oide	ATP	for
active t			`)		PP 1 - PP

Many candidates referred to the flat worm having a thin membrane - their cell membranes are no thinner than any other cell membrane.

They also appear to think that active transport is involved in the process.

Be careful not to confuse cell membranes with cells in exchange surfaces. It is also a good idea to refer to features shown on the diagram when a question asks you to use the diagram.

Question 4(b)(i)

Describing the negative correlation between temperature and oxygen solubility was an easy mark for nearly all candidates. It was pleasing to see candidates taking the trouble to correctly calculate differences in figures or percentage changes. There were noticeably fewer "it's roughly", "it's about" statements in answers than in previous years. Some candidates still need to realise that no credit will be given for just quoting figures from the table.

This response gained both marks available.

 (i) Describe the relationship between the temperature of the water and the solubility of oxygen in water.
As the temperature of worker increases,
the solubility of oxygen decrouses from 5°C to 40°C the solubility has decreased by
half from 12.8 to 6.4 mg dui-3
At 0°C it has a high solubility, at 14.6 mg dm

This candidate has recognised the trend and supported it with a suitable manipulation of figures i.e. the halving between 5 and 40°C.

This response gained one of the two marks available.

 (i) Describe the relationship between the temperature of the water and the solubility of oxygen in water. 	
	(2)
As the temperature of mater	***************************************
increases the Sombilia of	
mater in oxygen decreases.	
copo at 5°C Solubility is 1208 mas	dn3
where est as at 40°C combil	14 13
6.9 mg dm-3	

Results lus Examiner Comments

This candidate gained credit for the trend, but just quoting figures is not sufficient for gaining a mark for manipulation of figures.

When analysing data from a table or graph it is best to calculate a difference, rate, gradient, or similar that represents the point you have made in order to gain a mark for the correct manipulation of figures. Quoting the data may help illustrate the point you have made, but is rarely worthy of credit as a separate mark.

Question 4(b)(ii)

There were some excellent answers to this question with candidates demonstrating a good application of enzyme knowledge and concentration gradients to the context given.

Most candidates recognised that enzymes were temperature dependent but many also thought they were denatured at low temperatures as well as high temperatures. Only the better responses gave a good description about why reactions would be slower at lower temperatures and that it was a matter of balance between enzyme activity and oxygen concentrations.

Some candidates related their answers to membrane permeability and others thought that enzymes were directly involved in gas exchange. Some candidates thought that the higher oxygen levels at lower temperatures were toxic to the flatworms.

Candidates should note that just quoting the solubility of the oxygen at 15°C is not sufficient for credit.

This response gained all three marks available.

(ii) Using the information in the table and your knowledge of gas exchange and enzymes, suggest why flatworms are often found in water at a temperature of about 15°C.

AT tem peratures evenuel 15°C enzymes wen't be denotived and there's still a highenough level of exuger in the water for a concentration greekiest to be maintained for exuger to diffuse into the flatworm. At temperatures lewer than 15°C enzymes wowlen't work fast enough and at temperatures above 15°C exuger levels in the water well be too low.

This candidate recognises that low temperatures affect enzyme activity and that high temperatures would reduce the oxygen available for the flatworms, which are the key points of the question.

This response gained two of the available three marks.

(ii) Using the information in the table and your knowledge of gas exchange and enzymes, suggest why flatworms are often found in water at a temperature of about 15 °C .

(3)

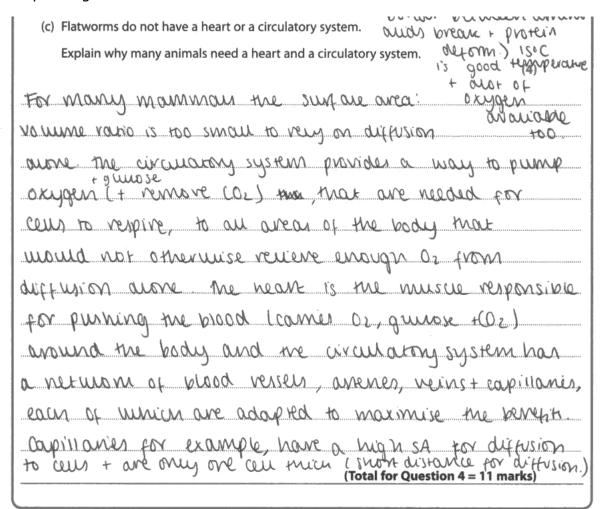
because at 15°C there is a high solvability of oxygen in the water, this means that the flatworms can maintain a steep concentration gradient where there is more oxygen in the water than in their bodies to neep oxygen diffusing into their blood. However the temperature cannot be too low or it may denature the active site of enzymes making them unable to form an enzyme substructe complex and therefore unable to be catalyse a reaction.

This candidate gained credit for the comments on oxygen concentration and concentration gradients for diffusion. However, they have not gained credit for their comments about enzymes as it is not true that the enzyme is likely to denature at low temperatures.

Low enzyme activity and denaturing are not fully interchangeable.

(ii) Using the information in the table and your knowledge of gas exchange and enzymes, suggest why flatworms are often found in water at a temperature of about 15 °C.	
3)	
- At 15°C the solubility of onygen in water is 1	.07
. This means that there is plenty of oxygen for	t
flationers to take in but the water isn't too for them to not be able to function property.	cole).

This response just gained the one mark for the comment on the level of oxygen in the water. Too cold to function is not clear or precise enough for credit at this level.


Question 4(c)

Most candidates were clearly familiar with the idea that diffusion alone is insufficient as a means of getting oxygen into all of the cells of larger animals. This was often correctly linked and stated with respect to the surface area to volume ratio.

A common error was to refer to the "mass transport" system, rather than "mass flow", although most recognised the heart's role in the circulatory system.

Many candidates often focused upon the need for a 4 chambered heart to separate oxygenated and deoxygenated blood, sometimes describing in detail the overall structure of the double circulatory system which was not what was asked for in the question.

This response gained all four marks available.

This candidate recognises the problems that large animals have - low surface area to volume ratio for gas exchange at the surface and that diffusion is not sufficient. They also explain what the heart does and what the circulation system carries in their explanation of why animals need a heart and circulatory system.

This clip also shows what happens when the answer from a previous question extends beyond the space provided. If your answer continues beyond the space available please indicate this clearly in the original answer space so that it is clear to the examiner that there is more to your answer, as they can only see the clips like those included in this report.

This response gained one of the four marks available.

(c) Flatworms do not have a heart or a circulatory system. The higher the sclubulty, more Ozh Bonspored, so higher Explain why many animals need a heart and a circulatory system. concentration graduat outtiens Animals need a circulately system so that so diffusió noppens blood can bett flow all around used as a mass transport system igen can be taken to hespine that blood can be transported Capillonies one used 02 Circulaton system maintaining circulatory system is also used for the removal Blood is used melabolic waste wa the blood. to Gronspon Oz and Oz ground the body (Total for Question 4 = 11 marks)

This candidate has provided plenty of detail about what the circulation system carries around the body for credit, but has not described what the heart does or why some animals need them in the context of flatworms not needing them.

Read the question carefully, think about the context and check you are answering the question that has been asked.

Question 5(a)(i)

Most candidates could correctly state a number of differences between the structure of reduced and oxidised DCPIP, although a few candidates lost marks for not stating which molecule they were referring to. Other candidates made mistakes by referring to O or N molecules and hydrogen bonds.

This response gains both marks available.

(i)	-	he diagram d DCPIP and			fere	nces betwee	en the stru	cture of		(2)
1 0 x	idised	DCPIP	unta	iis (a	donne	band	bettru	en	Minogen
and	Due	cansar	on its	ngl	M	Reduce	pcpii	does	not	and
tris	nitro	gen ha	sa h	ydso	94	1 bonde	a to i	۲.		***************************************
ne i	o on b	ne far Noan-ne	riģus us a c	com i	ne	aleoho off a arem. (is dom	canor Oxidise	n Me a DCP	rse 18 1	Books

The comparative comments about double bonds and hydrogens are all correct for maximum credit.

(i) Using the diagram, describe two differences between the structure of oxidised DCPIP and reduced DCPIP.

(2)

1 the oxidised DCPIP only has 7 hydrogens whereas the reduced DCPIP has a hydrogens.

2 the oxidised DCPIP has 7 doubte bonds whereas the reduced DCPIP has 6 doubte bonds

This response gains both marks for the correct numerical comparisons about the number of double bonds and hydrogen atoms.

This response gained one of the two available marks.

(i) Using the diagram, describe **two** differences between the structure of oxidised DCPIP and reduced DCPIP.

(2)

1 The service of oxidised SCPIP has been reduced SCPIP has been redu

The first statement about hydrogen is correct, but the second statement about the number of double bonds is the wrong way round.

It is easy to make mistakes like this. When answering comparative questions like this double check that what you have written is the right way round.

This response gained no marks.

(i)	Using the diagram, describe two differences between the structure of oxidised DCPIP and reduced DCPIP. (2)
1	hydreger bend is formed in reduced PCPIP
Ła	the central nitrate toda atom.
2217221111+++++2127222111111	
11133133313++4476567455888888	
2	hydrogen band is jarmed in reduced
DC	PIP to the axygen atom.

The candidate has got the correct idea about the differences between the molecules, but their quality of expression has let them down. There are no more hydrogen bonds shown on the diagram, but there are more hydrogens bonded to atoms in the molecule.

Take care with describing atoms bonding so you don't muddle the names of the bonds with the names of the atoms.

Question 5(a)(ii)

Many candidates failed to understand that vitamin C was acting as a reducing agent, or struggled to explain this chemical concept.

Some candidates wrongly stated that the DCPIP had become reduced by the vitamin C because vitamin C neutralised it or diluted it. Others said that it had been hydrolysed because water had been added. Some had some knowledge but could not decide whether to add or remove the electrons and hydrogens.

This response gained the available mark.

(ii) Suggest why these differences occur when DCPIP is used to determine the concentration of vitamin C.
(1)
- Vilamin C acts as a reducity agent, donathy hydrogen alone
lo Ne DCP19
- The stronger the concentration of Whomin C, the goder reduction occurs

This is an example of a very good response that clearly explains the role of the vitamin C in bringing about the chemical change in the DCPIP and also how it can be used to interpret the results.

(ii) Suggest why these differences occur when DCPIP is used to determine the concentration of vitamin C.

(1)

Vitamin C brings about the reduction of Oxidized DCPIP to Grom Reduced

OPIP. his theory that Vitamin Cacte as a reducing agent.

This is a typical example of a good response that gained the mark.

This response did not gain any marks.

(ii) Suggest why these differences occur when DCPIP is used to determine the concentration of vitamin C.

(1)

To see if there is any Change when a concentration of vitamin C is added.

This is typical of a large number of responses that did not explain why the changes occurred but tried to answer the question 'why use DCPIP?'

Read the question carefully. By reading the rest of the question you may also pick up on useful hints, for example the focus on the differences between oxidised and reduced DCPIP in the previous question could provide valuable clues as to what is happening in this chemical reaction.

(ii) Suggest why these differences occur when DCPIP is used to determine the concentration of vitamin C. (1)

This response is an example of a common error for this question.

Question 5(b)(i)

Most candidates recognised an increase in pH with increased storage time, although many candidates described the change in pH in the context of temperature change rather the storage time. Also when candidates attempted to manipulate the data it was quite common

Many candidates managed to correctly manipulate figures to demonstrate the changes in pH. However, many candidates made mistakes due to misreading the scale of the graph (for example by putting the decimal point in the wrong place e.g. 0.3 difference between 6° C and 8° C instead of 0.03) or figures were merely quoted rather than manipulated.

This response gained all three marks available.

(i) Using the information in the graph, describe the effects of storage temperature on the pH of mangaba fruits during this four-day storage period.

(3)

As storage time increased the pM of the mangaba increased. The pH is creased the most of the photosophic photosophi

This candidate clearly recognises the overall trends with storage time, points out the highest gain, the initial dip for 24°C and has two examples of correct changes calculated.

This is a good example of how to tackle a data interpretation question:

- 1. Identify the main trend.
- 2. Point out any extremes, changes in the patterns of the data.
- 3. Manipulate figures to illustrate the points you have made.

This response gained no marks.

This is unfortunately a typical example of a candidate just quoting a lot of values from the graph and not making any correct manipulations or describing any clear trends from the data.

When presented with data in a table or graph avoid just quoting a lot of figures directly from the data.

Question 5(b)(ii)

Most candidates demonstrated a good knowledge of this core practical outlining the key points on how to measure vitamin C content and that repeats were required. However many were unclear about the colour change, often just saying it went colourless, or saying to add DCPIP until it went colourless.

A significant number of candidates focused on obtaining a calibration curve using standard solutions of vitamin C but then failed to say how this would be used for this experiment.

Some candidates misinterpreted the question by describing an experiment about the effect of pH on vitamin C content (not storage temperature).

Weaker responses involved adding chunks of fruit to DCPIP. A significant number described storing juice once it had been extracted. Worryingly some candidates described 'the beetroot experiment'.

This response gained all five marks available.

*(ii) Describe an experiment that could be carried out to compare the changes in the vitamin C content of the mangaba fruit stored at 6°C and 8°C.

Fruit could be picked and stored at theseturo temperatures. At I day intervals, fifth Julie from fruit at little both temperatures could be taken an titrated against an identical known volume of OCPIP solution and the volume of juice required to make the solution go from dark thus to adoute seconded. This could be repeated with several different fruits stored at the came temperatures using the came volume of OCPIP solution and averages taken. To work out the Vitamin Content from these results, a calibration correcould be made using Alphan comments known conventation of VIIP solution. Agraph will be made thowing the Change in vitamin (conventation of the fruits one time to compare them. The minister in the air of the room that the fruit were kept in at both temperature would relad to be kept

This is an excellent example of the thorough and concise response that met the majority of the mark points available, demonstrating a good understanding of the practical techniques used in the core practical and how to apply them to the context of the question.

This response gained all five marks available.

*(ii) Describe an experiment that could be carried out to compare the changes in the vitamin C content of the mangaba fruit stored at 6°C and 8°C.

(5)

A large sample of the finit could be stored at 6°C and the same number at 8°C.

Every day, three finit from each & temporature should be taken and juiced, and then and the purce from each finit form the should be titrated with Doul of a 1% solution of DCPIP, to see how much of the juice is required to decolorize the solution.

This should be repeated with each of the finit from the 8°C batch (and an average volume found) and then repeated with the 6°C batch. The experiment should then be repeated every day for several days, and then the volumes required to fully react with the OCPIP from each temperature plotted onto a graph.

This response gained credit for:

- using extracted juice;
- titration;
- use of repeats;
- controlling other variables (volume and concentration of DCPIP);
- testing at regular intervals of time.

Although this response gained full credit it could have been even better if they described what the colour change was (particularly in the context of the earlier sections of the question).

It would also be helpful if they described the purpose of the graph. This response gained three of the available marks.

*(ii) Describe an experiment that could be carried out to compare the changes in the vitamin C content of the mangaba fruit stored at 6 °C and 8 °C.
(5)
Extract the Viternin C from mangabas
Stored at 6°C and at 8°C
perhaps by extrenching a juice.
measure equal solutions of DCIP in a
test tube. Lisman Prepare 7
lest toubes one for each temperature
Using a pipette add the vitamin C
Solution prepused to the MIP drop by drop
until it turns colour tess, measure hou
many drops are needed to make the
perir go alour less
Repeat results to increase reliability.
(Total for Question 5 = 11 marks)

This response gained credit for:

- extracting the juice from the stored fruit;
- the description of titration;
- repeats.

This response gained no marks.

*(ii) Describe an experiment that could be carried out to compare the changes in the vitamin C content of the mangaba fruit stored at 6°C and 8°C.

An experiment that could be carried out could be shart by:

- authory the man guba fruit into five equal piecos.

rinsing away any excess pigmont that leaked.

I set our I terr tubes and put the pieces of mangaba fruit in side each are. The rut these in water bottoms of temperatures different temperatures (e.g. 10°c 20°c 20°c 20°c, 40°c, 50°). Take Them

This is an example of a response that has muddled techniques from a couple of core practicals. They have ignored the context of the question apart from the fruit and temperature and started to describe the beetroot membrane permeability practical.

Read the whole question carefully so you pick up on the context the practical technique is being applied to.

Question 6(a)

This question was very well answered, with most candidates correctly identifying and stating the hydrophilic and hydrophobic nature.

Most candidates were not specific about the attraction of the hydrophilic heads to water (often it was that they "turn to water" or "face water" or are "in water"). Many candidates merely used the terms "water loving" and "water hating" to describe the orientation.

Several candidates got their heads and tails mixed up, or described the whole phospholipid as being polar with a positive head and a negative tail.

Some candidates answered from the point of view of arrangement in relation to function rather than orientation of molecules in a polar environment. Few clearly identified the significance of aqueous environment each side of the bilayer.

This response gains all three marks available.

6 The structure and properties of the cell membrane control which molecules can move into or out of the cell.	
 (a) The phospholipid bilayer plays an important role in this control of movement of molecules. 	
Explain why the phospholipid molecules form a bilayer. (3)	
Phospholipid bilayers are formed due #	
to the phospholipids hydrophilic and hydrophobic	
nature. The phospholipid head is hydrophilic	
this means that it is attracted to water and	
therefore will form the outer layer of the bilayer and The tails of the phospholipid are	
hydrophobic. this means they repet water and	
hence go to the inside of the bilayer and form	
a fluid centre.	

Ås well as describing the heads and tails as hydrophilic and hydrophobic, this response has also gained credit for recognising that the heads are attracted to water that causes their orientation.

This response gained two of the three marks available

- **6** The structure and properties of the cell membrane control which molecules can move into or out of the cell.
 - (a) The phospholipid bilayer plays an important role in this control of movement of molecules.

Explain why the phospholipid molecules form a bilayer.

(3)phosphalipid molecules form a bilager beause the phosphate head is hydrophilic and is poraraged so that it faces outwards and the fatty acid tail is hydrophobic is it faces inwad. The make the phospholipid bloger soluble so it can be transported in Solvent easily. As well as Phospholipids, there are also glycoportains and glycolipids present, arranged like tiles in a mosaic. Also Cholesterol is present and Sonds with the Phospholipid moleculas making the membrane ven A bilayer is fromed to allow Small molecules like glucose to enter it by diffusion and large molecular Connot and reed channel or carrier postains to do so.

The candidate correctly identifies the hydrophilic and hydrophobic parts of the phospholipid for two marks. However, they fail to go on to explain the orientation of the molecules in the membrane in relation to the aqueous surroundings. Instead they are distracted by functions of the membrane and other features.

Concentrate on the question asked and avoid distractions if possible.

This response gained one of the three marks available.

- **6** The structure and properties of the cell membrane control which molecules can move into or out of the cell.
 - (a) The phospholipid bilayer plays an important role in this control of movement of molecules.

Explain why the phospholipid molecules form a bilayer.

(3)

The phospholipids forms a bilayer between the membrane which are accompanied by protein channels, where the phosphate group is faced towards the water and fatty acid tail away from water. The bilayer protein the transports molecules can ions from a higher concentration to a lower concentration.

This candidate has gained credit for the orientation of the fatty acid tails, but has not explained why the heads and tails will face in opposite directions.

The phosphate head facing the water is not sufficient for credit as it is chemically attracted to the water.

Question 6(c)(i)

Q6(b):

Few candidates struggled to identify the correct transport processes for these multiple choice questions. The most common error was to either mark more than one process against the description, or to confuse facilitated diffusion, osmosis and diffusion (probably by ignoring the example molecule or ion transported by this method included in the table).

Q6(c)(i):

Candidates often demonstrated poor writing skills in comparing the two models. They often described the fluid mosaic model but didn't compare it to the D-D model and struggled with the terms intrinsic proteins, protein channels and often just referred to the bilayer. Many just focussed on the lack of detail seen in the D-D model.

Many did, however, recall that cholesterol/glycoproteins were present in the fluid mosaic model.

This response gains both available marks.

 Use the information in the diagram to compare the Davson-Danielli model with the fluid mosaic model. 	
	(2)
Davin Daniell model has profess layer article pre	******************
phospholipid bilager, where the fluid movaic moder	>> <u>₽₹₽₽₽</u>
na protein layer with the phospholipia bilager.	***************************************
Twe is no indication of any choterborol or	32552-740-4445545433333333333333333333333333333
glycoprotein and glycolipidin the Davion Oantell	
model unveas pre fluis moraic model mons	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
gry co gly coprotein and gry colled along with integral	12/11/11/11/11/11/11/11/11/11/11/11/11/1
and periphical protein	(CECCUTE CONTROL OF THE PROPERTY OF THE PROPER

This example of a very good response gains credit for recognising:

- both models have proteins and a phospholipid bilayer;
- the proteins are distributed differently in the two models;
- the fluid mosaic model includes other components in addition to the proteins and phospholipids, unlike the D-D model.

This response scored no marks.

(i) Use the information in the diagram to compare the Davson-Danielli model with the fluid mosaic model.

(2)

The Davson-Danielli Model is very bassic, however the fluid mosaic model is more detailed showing you all amponents involved.

This response is typical of many responses that compared the simplicity of the models without going into details about the components themselves.

This response failed to score any marks.

(i) Use the information in the diagram to compare the Davson-Danielli model with the fluid mosaic model.

(2)

The Davson - Panielli model has 3

Once layers. Whereas, the fluid mosaic model has only two layers. Explosiptolisis and the phospholisis.

This simplistic comparison of the models does not gain any credit, particularly as the D-D model is labelled as having a phospholipid bilayer.

Question 6(c)(ii)

This question was poorly answered by the majority of candidates. Many candidates did mention protein carriers/channels but not their function. Few recognised the likely inability of D-D model to carry out osmosis, diffusion, exocytosis or endocytosis.

This response gained both marks available.

(ii) Explain why the Davson-Danielli model does not support our current knowledge of how molecules can move through the cell membrane.
(2)
The doesn't she the differ the profin
types vooled to the differ transport
notes. Er engle carrie order to active trispet
a channel protein to faultitude districe. It de
to would get be able to explain the processes of
of Endergross of Excyclosis by verilles for the
(Total for Question 6 = 10 marks)

The candidate has clearly linked the lack of carrier proteins in the D-D model to the relevant transport process. They have also recognised that model will make endocytosis and exocytosis impossible.

This response gains both marks available.

(ii) Explain why the Davson-Danielli model does not support our current knowledge of how molecules can move through the cell membrane.

| Ind Solvable. (2)
| A protein layer would not allow lips Molecules to pass |
| Howard Caroteaster Meaning Simple diffusion of some molecules would not be able to huppan.

This model would also not allow membranes to entry tosis and exocytosis

This candidate has recognised that the protein layer will be a barrier to diffusion and the barrier to membrane fusion will prevent endocytosis and exocytosis.

This response failed to score any marks.

(ii) Explain why the Davson-Danielli model does not support our current knowledge of how molecules can move through the cell membrane.

(2)

He says that the two states are It does not allow the hydrophillic heads of the phapholipide is the bilayer to be in contact in water on allow carrier and channel poteins.

The reference to carrier and channel proteins is correct, but unfortunately is not enough for credit as they need to be linked to a transport process for how molecules can move through the cell membrane.

Question 7(a)

Many candidates failed to link the mutation to a change in the DNA base sequence – if anything, it was described as a change in the amino acid sequence, or an error in transcription.

Many candidates did, however, identify implications of stop codes, frame shifts, etc. and that a wrong protein would be synthesised, or transcription/translation would not occur. Some of the best responses recognised that a frame shift mutation would have a more significant impact on the protein than the substitution of a single base.

Many candidates did just mention mutations as 1 base change and then 1 amino acid change showing that many candidates think 1 amino acid change is automatically a completely different protein.

A majority of candidates merely concluded that the mutation would stop the protein being made – which was just repeating the stem of the question.

This response gains both available marks.

(a) For class I cystic fibrosis, suggest how a mutation in the CFTR gene could result in no CFTR protein being synthesised.

(2)

The mutables in the CFTR gene could change the sequence of bases on the CFTR gene. This could be through an investion, insertion, duplication, deletion or substitution. This would in turn alto the MRMA sequence which services to a nitrocore, sound in turn after the sequence of annino acids in the primary structure of the potein. For example, it may course a shop colors be introduced at the beginning of the tribasor to shop which the MRMA sequence, the signalling to the ribasor to shop which the MRMA reduceds bind to the mRMA, causing the protein to have no primary structure.

This response demonstrates a good understanding of different types of gene mutation and how they will affect the primary structure of a protein. It also provides a good example of a catastrophic mutation producing a stop codon in the wrong place.

This response gained no marks.

(a) For class I cystic fibrosis, suggest how a mutation in the CFTR gene could result in no CFTR protein being synthesised.

Cre or More

(2)

During translation the CFTR gene could result in no CFTR protein a mutation in the CFTR gene could result in no CFTR protein a mutation in the CFTR gene could result in no CFTR protein a mutation in the CFTR gene could result in no CFTR protein a mutation in the CFTR gene could result in no CFTR protein a mutation in the CFTR gene could result in no CFTR protein a mutation in the CFTR gene could result in no CFTR protein a mutation in the CFTR gene could result in no CFTR protein a mutation in the CFTR gene could result in no CFTR protein being synthesis and the could result in no CFTR protein a mutation in the CFTR gene could result in no CFTR protein being synthesis and the could result in no CFTR protein being synt

This response is typical of many responses that lacked precision and therefore did not gain any credit at this level.

This response gains both marks available.

(a) For class I cystic fibrosis, suggest how a mutation in the CFTR gene could result in no CFTR protein being synthesised.

(2)

A mutation such as a detection of Adoution can change the sequence of amino acids with be given.

This is the primary shucker and with affect determine the technique shucker of the protein diversity between & groups and different bonds wan as to interpolations between & groups and different bonds wan as tonic and hydrogen forming. Therefore, a out terent protein cities than certical production. However, it substitution is an third base it might have no offer a detail.

There is a good description of how a mutation could result in a different protein. In particular, the candidate has demonstrated a good understanding of the genetic code, including its degenerate nature, which is a level expected at A2 rather than AS level.

Question 7(b)

Many candidates knew the location of the CFTR protein but many failed to score full marks because the locations they gave were not precise enough e.g. "on cell membranes in lungs" rather than "in the cell membranes of lung epithelial cells".

Some candidates stated that the protein was on chromosome 7 confusing the gene with the protein.

This response gains both available marks.

(b) Class II cystic fibrosis results from the CFTR protein being located in the wrong place.

Describe the correct location for the CFTR protein.

(2)

They are found incorportated within the phospholipid bilayor, like integral proteins. CFTR protein is found on cell surface membrane of mucus secreting cells present in tracker, bronchus, alvedi, intenintestines, pancreatic ducts, and track of the reproductory system.

As well as getting the correct location in the cell for the protein, this candidate has also identified some cells it will be found in.

This response gains one of the two marks available.

(b) Class II cystic fibrosis results from the CFTR protein being located in the wrong place.

Describe the correct location for the CFTR protein.

The CFTR protein.

(2)

The physiological bilage galeall menone and spans the entire midtles of the physiological strains.

The candidate clearly identifies where in the cell you would find the protein, but not which cells it needs to be a part of.

This response gains one of the two marks available.

(b) Class II cystic fibrosis results from the CFTR protein being located in the wrong place.

Describe the correct location for the CFTR protein.

(2)

The CFTH protein is found on chromosome
Tank is present in the endotherium cells uning the digestive system.

The candidate does not gain any credit for chromosome 7 as that is a position for the gene and not the protein. However, they have recognised which cells and systems the protein is needed in for a mark.

This is an example of a response that did not gain any marks.

(b) Class II cystic fibrosis results from the CFTR protein being located in the wrong place.

Describe the correct location for the CFTR protein.

(2)

The correct place for the CFTR profeir is by the cell wall the where the sodium is are, allowing then though

Remember you don't get cell walls in animals, but you do get walls made out of cells. Be very careful when using the term cell wall in a response unless you are describing a plant or bacterial cell.

Question 7(c)

Many candidates could recall the primary structure definition well and most could then describe why this mis-folded. In direct contrast to question 7(a) many candidates described a change in the base sequence rather than amino acid sequence.

A significant number of candidates described the way in which the folding of the secondary structure would be wrong with reference to alpha helices and beta pleated sheets, without any mention of the bonding between the amino acids. Some referred to different peptide bonds.

Some candidates simply reworded the question in the answer.

This response gains both marks available.

(c) The mutation causing class III cystic fibrosis results in a change in the prin structure of the CFTR protein.	nary
Explain why this would result in the CFTR protein being mis-folded.	(2)
A different primary structure means than there is a different linear sequ	never d'owno
and and therefore a dyserbru securence of & groups. There was	\oL
afterent interactions between the Regions and different bonds such as	
tone and ausurpice bridges will form. This will restrict in the	preteri
being forced in a different may (18 the femant stricture)	mandon manda m

This response is typical of the many which demonstrated a good understanding of the primary structure of a protein and how the sequence of amino acids will affect the folding through the bonds made.

This response gained no marks.

(c) The mutation causing class III cystic fibrosis results in a change in the primary free collaboration causing class III cystic fibrosis results in a change in the primary free collaboration.		
Explain why this would result in the CFTR protein being mis-folded. (2)		
If there is a charge in the primery shutue,		
this news the coding for the protein is		
array from the begining and the wrong		
anti-cadies RNA moleule mill outland. This		
process untaken meuns bee will be a entirely		
different protein produced and will affect the secondary		
and tertian skriting of the protein		

This response is typical of those that did not demonstrate an understanding of what the primary structure of a protein is, or how they are folded into their functional shapes.

Question 7(d)

Few candidates demonstrated a good recall and understanding of the CFTR function so the term channel protein was seldom used and many thought the CFTR channel transported sodium of calcium ions, or even chlorine. Many candidates confused the channel protein with an enzyme and there were a lot of references to active sites.

Many candidates gave a long but imprecise description of why you would get sticky mucus without addressing what this question asked with regard to the functioning of this protein.

This response gained both available marks.

(d) For class IV cystic fibrosis, explain why a faulty opening of the CFTR protein would affect the functioning of this protein.	
unce the functioning of this protein.	(2)
A foundry opening of the CFTR protein, which mean that o	J. krs
could not more out of the cell into the much through of the channel of	DICHEIO
Therefore, wat ions would more by facultained diffusion from their	nucus to the
tissue fillia and tandition by active manager into tissue third this	would
create on exectnochemical gradient which CI-ICRS would follow by	critteres.
Resulting in water tollewing by osmosis our of musers making it this	ca end
Sticky	анны <i>нн</i> ааннаан арадаан араа

This is an example of a good response from a candidate who clearly understands the causes of cystic fibrosis. Both marks needed for the question are covered in the first sentence. The rest of the response, although correct, is not relevant to the specific question asked about the functioning of the protein and is therefore not needed.

This response failed to score any marks.

(d) For class IV cystic fibrosis, explain why a faulty opening of the CFTR protein would affect the functioning of this protein.

(2)

Chaps water entering into the Mucus

For be thick and sticky:

Due to be increase in Sodium ions

This is a typical response for those candidates who were aware of the some of the processes involved in the problems of cystic fibrosis, but did not answer the specific question asked.

This question specifically asks about the functioning of the CFTR protein which is not involved directly in the movement of water or sodium ions. Read the questions carefully and try to be as precise as possible in your responses.

This response gained no marks.

(d) For class IV cystic fibrosis, explain why a faulty opening of the CFTR protein would affect the functioning of this protein.

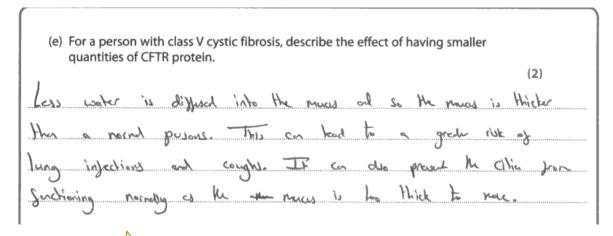
(2)

The active sie is not the right shape and was unich means that the reaction with that the substrate unit (it. This means that the reaction with not take place because the CFTE protein opening is faulty.

Gath entighte is specific and if it is not corect then the substrate unit bind to it.

This response is typical of those who confused the CFTR protein with an enzyme and therefore failed to gain any marks.

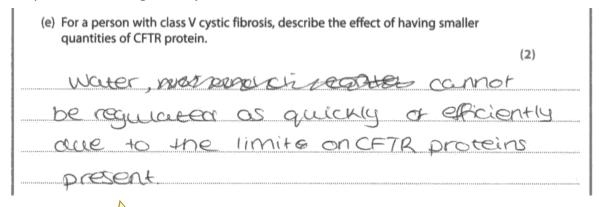
All proteins have specific shapes that are important to their functions - not just enzymes and their active sites.


Question 7(e)

Many candidates failed to identify that there would be less chloride ions/water in the mucus, but described that the ions would move the wrong way, or not move (i.e. similar answers to some of the incorrect ones given in question 7(d))

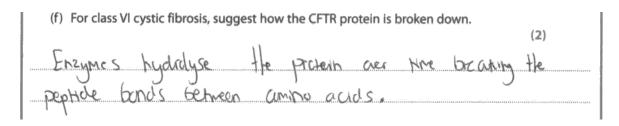
When candidates did recognise that there would be an effect on the mucus they often simply said "sticky" rather than "stickier", not recognising that mucus is "sticky" in someone not affected by cystic fibrosis.

Some candidates recognised that this would affect the lungs, etc. but rarely gave examples of the consequences, or gave vague statements such as "digestive problems".


This is an example of a response that gained both marks available.

This candidate has ably described the consequence of having less CFTR in terms of less water in the mucus, the effect on the mucus and the consequences of the thicker mucus in the lungs.

This response did not gain any marks.


This response is typical of those that lacked sufficient precision for credit at this level.

Question 7(f)

This question was left blank by a significant number of candidates. Reference to enzymes frequently gained a mark, but few candidates applied their knowledge of protein structure and consequently failed to refer to peptide bonds or hydrolysis.

Many candidates referred to the weakness of bonds in the protein or that the protein spontaneously broke down because it was unstable.

This response gains both marks available.

This candidate makes three creditworthy statements in a clear and concise response. The involvement of enzymes, the type of reaction and what is broken.

This response gained one of the two marks available.

(f) For class VI cystic fibrosis, suggest how the CFTR protein is broken down.
The CFTL protain is brown deun by enzymes Bydrolysis, the ace or water There are more substrates than audio burding sites therefore this disrupts the synthesis of the protain.
bydrolysis, the occasion
There are more subavaves than avoic buriling sites
therefore this disrupts the synthesis of the protein.
genetic mutation

This is a typical response that gained credit for recognising that an enzyme must be involved. However, the rest of what they have written is irrelevant and they have not specified what is broken or what reaction takes place.

This response scored no marks.

(f) F	or class VI cystic fibrosis, suggest how the CFTR protein is broken down.
	(2)
	he CFTR protein many break down
b	leause the inic, hydrogen bends and
d	bulphide bridges and many not be very
S	rong. If not then these bonds will break
Ve	of easily haughe due to a slight rise in
tex	sperature. This will ther cause the protein
- Ac	unfield and not function.
	(Total for Question 7 = 12 marks)

This response is typical of many who related the question to the overall stability of the protein and the bonds in the secondary and tertiary structures.

Question 8(a)

The vast majority of candidates gained the mark for their description of the correlation for this data. Some candidates just stated that there was a positive correlation and others described how alcohol concentration caused cirrhosis.

Some candidates merely stated that as one variable changed so did the other without being specific to alcohol consumption and risk.

There were some candidates who misinterpreted the labels e.g. days of alcohol consumption, rate of cirrhosis, or even how many relatives suffered from cirrhosis.

(a) The results of these studies indicate that there is a correlation between alcohol consumption and cirrhosis.

Explain how these results indicate that there is a **correlation** between alcohol consumption and cirrhosis.

(1)

. There is a positive correlation between alcohol

consumption and circhosis.

· As the alcohol consumption increases the relative

risk of developing cirrhos increases.

This is typical of the many good responses that gained the mark.

This response did not gain the mark.

(a) The results of these studies indicate that there is a correlation between alcohol consumption and cirrhosis.

Explain how these results indicate that there is a **correlation** between alcohol consumption and cirrhosis.

(1)

Changes in alcohol consumption result in changes anits the

Hisk of developing circhosis

This is a description of a causal link rather than a correlation and the candidate has not used the data to describe the direction of the correlation.

Remember that a correlation does not always signify a causal relationship so be careful to distinguish between the two when asked.

Question 8(b)(i)

Most candidates could compare the results for the different women well and identify the general trend of both and differences. However the scale proved difficult for many of them to be able to use – many manipulated figures were incorrect. Marks were also lost by candidates misinterpreting the graph and thinking that it was to do with rate or that it was to do with whether one group drank more than the other. 'Group A had a greater risk when consuming less alcohol', or similar, was a common answer.

This response gained both marks available.

(b) (i) Using the information in the graph, compare the results for women in studies A and B.

(2)

Both sprays of women had an increased risk of developing of without as their alathol consumption increased in study A, the increased risk was much steeper - reaching a relative risk level of 4 when their consumption was 30g days whilst for shudy B, consumption was 47g days before the risk got to 4 After 30g days for group A, the risk increased steepe with subsequent additions is alrohol consumptions whereas the risk for group B women got steeper after 40 g days of alcohol cross consumed

This is an example of a very good response where the candidate recognises the similarities in the two data sets as well as picking out specific differences with precision by comparing specific figures from the graph.

Many candidates got muddled in this question by discussing rates, which is not appropriate to this set of data as no rates have been measured or can be determined from the data. This candidate correctly avoided this by using language that describes the gradients of the lines and not changes with time.

This response failed to score any marks.

(b) (i) Using the information in the graph, compare the results for women in studies A and B.

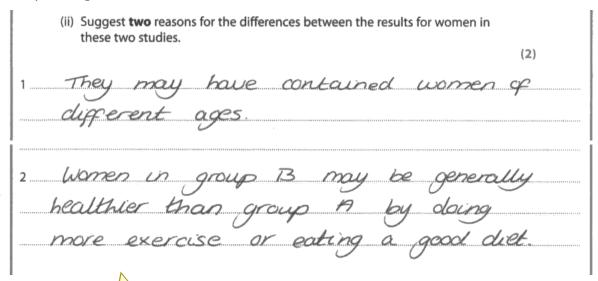
(2)

women in Study B who consumed more alcohol had a lower nisk of developing circhosis than the women in Study A.

developing cirronsis after 30 days of consuming alcohol than the women in Study B.

This example illustrates several of the problems many candidates found with this question:

- The first statement is ambiguous and is wrong for many levels of alcohol consumption;
- The second statement does not make a clear comparison to study B;
- The second statement is wrong as days are not measured in this study. The independent variable is not time, but alcohol consumption per day.



When you explore data from a graph pay particular note to what the labels and units for the axis are as that will often inform you what the independent and dependent variables for the investigation are, helping you to formulate conclusions, etc.

Question 8(b)(ii)

Many candidates scored both marks here with the most common correct answers being differences in age, diet or genetics. Often candidates had the right ideas but their answers were not precise enough to gain marks e.g. differences in lifestyle.

This response gained both marks available.

Three clear reasons for possible differences in the results of the groups have been provided. NB: 'generally' healthier is not very precise, but the candidate has qualified this with reference to both exercise and diet.

This response gained one of the two marks available.

	(ii) Suggest two reasons for the differences between the results for women in these two studies.
	(2)
	1 The verner is study B consumed more alcohol.
ı	2 The verner in bett group gra Souly A may be a
	different age to these in go study & because amon
	in Soudy A were at a higher rish of the obscuse
ı	therefore this cow could suggest that there in Strify A
I	uere alder.
	2 The wemen in both group and Souly A may be a different age to those in an Souly B. Because women in Souly A were at a higher risk of the discusse therefore this could suggest that there in Souly A were alder.

Although it is true that some of the women in study B did consume more alcohol than some of the women in study A, this is what was being measured and compared in the investigation and is therefore not a relevant reason for the difference to include here. Unlike age, which could be an uncontrolled variable in the study and therefore was credit worthy.

Question 8(c)

Once again the scale and multiple data sets proved difficult for many candidates to be able to use. Most candidates just looked at studies separately e.g. men in group A with women in group A and did not notice the same trends in the two studies. Marks were again lost by candidates misinterpreting the graph and thinking that it was to do with rate or that it was to do with whether one group drank more than the other. 'Women were more at risk when they drank less', or similar, was a common answer.

A significant number of candidates thought that men were at greater risk and tried to explain it due to hormone levels etc.

This response gained both marks.

	(c) Describe the evidence shown in the graph that suggests that the ris developing cirrhosis depends on gender.	sk of
I	women,	(2)
I	-In both arayps, maken home a	higher
	nsk of developping cirrhosisbe	fore Gogday-1.
l	- In group A, men can anic	- 30 80 66
I	20 g day more than women !	aefere the
	rist bécanning over 4	шинин түүл тайын түүл тайын түүл тайын тайын түүл
1		

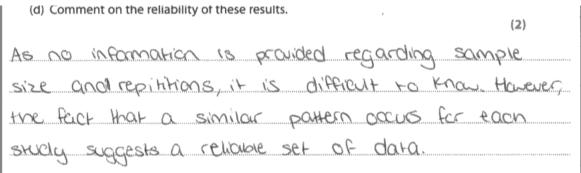
This candidate has made a relevant comparison between the women and men in the studies and backed it up with a calculation drawn from a couple of points of data to illustrate the main point they have made and gain the manipulation of figures mark.

This response gained no marks.

(c) Describe the evidence shown in the graph that suggests that the risk of developing cirrhosis depends on gender.	
	(2)
from the graph we can see th	at
in Sudy A the men had a much	٨ .
higher risk of getting cirkho	usis.
than woman.	
But in 5	

This incorrect response is typical of those drawn by candidates who focussed on the extremes of the data provided, rather than making direct comparisons at the same alcohol or relative risk levels.

Question 8(d)


Many candidates confuse reliability and validity. Many candidates gained a mark for indicating that the sample size was not known, but many were more concerned with the number of studies undertaken.

A few recognised that the studies provided similar results or trends, but some said that the study was unreliable because the results were all so totally different from each other.

It was very rare for candidates to consider the lack of statistical evidence e.g. error bars or standard deviations.

Many candidates gave long lists of variables which were not controlled, e.g. ethnicity, age, health, etc.

This response gains both marks available.

This candidate has recognised that the similar patterns suggest the results are reliable, but we don't know how many people are involved in each study (which will have a significant effect on confidence limits).

This response gains one of the two marks available.

(d) Comment on the reliability of these results.

(2)

Thre is no indicate as to the otto variables which may affect with, such as smole; or the size of each study.

Also a control group would help older if alcohol is the variable affect; the resule. It large group of pools studied with such such age group would be more reliable.

This candidate correctly recognises that we need to know the size of each study to assess the reliability of the studies. However, the other variables mentioned such as smoking and age are more related to validity than reliability and therefore were not credited here. This response gained no marks.

(d) Comment on the reliability of these results.	
	(2)
the results arent very reliable	as thege
are no regreat and there is	
A second	2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
contall group, also there are a	aseragoo
Calculated	

Many candidates main concern over reliability was the lack of repeats (although there was one) rather than the number of participants in each study and the statistical significance of any differences.

Don't forget that reliability includes the number of samples in a study as well as the number of times a study has been replicated.

Question 8(e)

Many candidates did not read this question properly and many answered "yes" to the question asked thinking the question asked 'is it ...' instead of 'it is'

Most candidates who did answer the question asked demonstrated an understanding of why people underestimate – losing count due to drunkenness was a very common answer.

A few candidates referred to the perception of risk and the relationship between alcohol consumption and cirrhosis without making it clear why this would result in an underestimation of alcohol consumption.

This response gained the mark.

TOTAL FOR PAPER = 80 MARKS	_
(Total for Question 8 = 10 marks)	
undeskiting	
intexicated; either fegethening amount consumed as	
inaccurate data provided; i.e forgotten units/moss	
inaccuate data previded; is fagotten units/mass	
Suggest one reason for this.	
(e) It is possible that the men and women in these studies underestimated their alcohol consumption.	

This is typical of the most common correct response given for the reason for underestimation.

This response failed to gain the mark.

(e) It is possible that the men and women in these studies underestimated their alcohol consumption.

Suggest **one** reason for this.

Because many of the results show incredibly high n3ks of developing the disease

Many responses to this question were confused and lacked clarity like this example.

You may have reached the end of the paper and you are tired and in a hurry, but it is worth spending some time reading questions carefully and checking your answers make sense.

This response did not gain the mark.

(e) It is possible that the men and women in these studies underestimated their alcohol consumption.

Suggest one reason for this.

(1)

YES US PROMON IN SHULLY A FOR EXAMPLE

WHICH AND ONLY CLINING 303/CROY-1 are at the

This is a typical response of the many candidates who read the question as: 'Is it' rather than 'It is' As in this response these candidates often went on to look at the data for evidence of the underestimation instead of providing a reason the men or women may have underestimated their consumption.

Read the question carefully - was there a question mark at the end of the question sentence?

Paper Summary

Based on their performance on this paper, candidates are offered the following advice:

- Read the whole question carefully, including the introduction, to help relate your answer to the context asked. You should read the question through carefully at least once and then write down your knowledge and understanding in a way that answers the question.
- Don't assume that the question asked is the same as that which has appeared on a previous paper.
- Read your answers back carefully do they answer the question, have you made at least as many clear points as marks are available.
- When asked to distinguish between two things make sure your answer is comparative and mentions both things being compared.
- Include a calculation whenever you are asked to describe or compare numerical data in tables or graphs.
- Don't be afraid to include a sketch diagram or graph if it will help add clarity to your answer
- When describing the measurement or control of variables, be specific about what is to be measured e.g. volume or mass, and avoid vague terms such as amount.
- Pay particular attention to spelling, the use of technical names and terms, and organisation of your answer in QWC labelled extended writing questions.
- Explore and assess examples of candidate responses from this report to help you understand what makes a good response to different types of questions, and exemplify the level of knowledge and understanding expected at AS level.

Grade Boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link: http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

