## Mark Scheme (FINAL) Summer 2008

GCE

GCE Biology (6101/01)

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


# PRE-STANDARDISATION MARK SCHEME - UNIT 1 (6101) <br> AS BIOLOGY / BIOLOGY (HUMAN) J une 2008 

## STRICTLY CONFIDENTIAL

| Principal Examiner: | Mr Tony Balshaw; 12 Tyr Common, Gilwern, Abergavenny, Monmouthshire, NP7 OBB Telephone: 01873830094 email: agbalshaw@aol.com |
| :---: | :---: |
| Team Leader: | Dr Caroline Wilcox; 58 Godwin Road, Stratone Village, Swindon, Wiltshire, SN3 4XG <br> Mobile Telephone: 07836603322 <br> email: caroline@ewilcox.fsnet.co.uk |
| Team Leader: | Mr Bryan Hollamby, 30 Oak Road, Glinton, Peterborough, Cambridgeshire, PE6 7LD <br> Tel.: 01733252603 <br> email: bryan.hollamby@tesco.net |
| Team Leader: | Mrs Marleen Hamblin, 42B Whiterow Park, Upper Studley, Trowbridge, Wiltshire, BA14 0EQ <br> Tel.: 01225755829 <br> email: cmhamblin@hotmail.com |
| Please contact the ePEN helpdesk for technical queries: |  |
| Online Associates Helpdesk |  |
| Telephone | 08001699202 |
| Email | UKservicedesk@pearson.com |

## GCE Biology / Biology (Human) Exam Management Contact Details

| QDAM | Damian Riddle |
| :--- | :--- |
| Telephone | $\mathbf{0 2 0 7} \mathbf{1 9 0} \mathbf{5 0 2 4}$ |
| Email | damian.riddle@edexcel.org.uk |
| Address | Edexcel |
|  | $5^{\text {th }}$ Floor <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> London Holborn <br> WC1V 7BH |


| Subject Leader | Assie Yamin |
| :--- | :--- |
| Tel | $\mathbf{0 2 0 7} \mathbf{1 9 0} \mathbf{4 7 4 1}$ |
| Email | assie.yamin@edexcel.org.uk |
| Address | Edexcel |
|  | $5^{\text {th }}$ Floor <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  London High Holborn |
| WC1V 7BH |  |


| Exams Coordinator | Katerina Keplova |
| :--- | :--- |
| Tel | $\mathbf{0 2 0 7} \mathbf{1 9 0} \mathbf{4 3 6 7}$ |
| Email | katerina.keplova@edexcel.org.uk |
| Address | Edexcel |
|  | $5^{\text {th }}$ Floor <br>  <br> London Hold <br> WC1V 7BH |


| Question Number | Answer |  |  | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Process | Requires transport proteins | Requires energy in the form of ATP |  |
|  | Simple diffusion | $\times$ | $\times$ |  |
|  | Facilitated diffusion | $\checkmark$ | $\times$ |  |
|  | Osmosis | * | * |  |
|  | Active transport |  |  | (4) |
|  | NB 1 mark for every two correct answers |  |  |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{2}$ | 1. hydrophobic / non-polar / not charged ; <br> 2. glycerol / propan-(1,2,3)-triol ; <br> 3. (saturated / unsaturated) fatty acids ; <br> 4. ester / covalent ; <br> 5. insulation / buoyancy / energy store / protection <br> / source of metabolic water ; <br> Comments <br> $m p$ 1: ACCEPT un-polar <br> $m p$ 4: ACCEPT esther, easter <br> $m p ~ 5: ~ d o ~ N O T ~ a c c e p t ~ e n e r g y ~ s o u r c e ~$ | (5) |


| Question Number | Answer |  |  | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3 |  |  |  | (6) |
|  | Name of cell structure | Description of cell structure | Diagram of cell structure |  |
|  | nucleolus ; <br> (1) |  |  |  |
|  |  |  | pair of cylinders ; <br> at right angles to each other; (2) |  |
|  |  | 1. spherical (structures) ; <br> 2. single membrane ; <br> 3. containing \{hydrolytic / eq\}enzymes; $\max (2)$ |  |  |
|  | microtubules; <br> (1) |  |  |  |
|  | Comments <br> Centrioles <br> 1. cylinders ca rectangle, <br> 2. ACCEPT cyli <br> 3. penalise mp <br> 4. if any other labelled th <br> NB An email w <br> Lysosomes <br> mp 1: if size giv <br> ACCEPT <br> reference <br> mp 2: ACCEPT <br> bound <br> mp 3: ACCEPT ACCEPT | be represented as 3D cylin r two parallel lines and a circ ders shown as 9 sets of trip 1 for any incorrect labelling tructures are shown, then centrioles for marks to be be circulated showing acc <br> en, do not accept larger th esicles, circular, round or g to 'molecules' negates the <br> ne or a membrane, but NO ganelle' <br> ysozyme or digestive enzym description of its function | ers, a 2D <br> cle <br> ets <br> ey must have warded ptable diagrams <br> $1 \mu \mathrm{~m}$. <br> bular <br> mark <br> 'a membrane- |  |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 4(a) | 1. size - drawing is correct length ; <br> 2. shape is accurate ; <br> 3. cell content - nucleus drawn in correct position with nucleoli shown ; <br> Comments <br> mp 1: ACCEPT $7.8-8.8 \mathrm{~cm}$, measuring the length of cell across the middle <br> if more than one cell drawn, do not award this marking point unless cell A is labelled <br> mp 2: look for (i) slight curve of left-hand wall and (ii) 2 small projections drawn left of centre <br> $\mathrm{mp} \mathrm{3:} \mathrm{one} \mathrm{or} \mathrm{two} \mathrm{nucleoli} \mathrm{shown}$ nucleus should be roughly in centre of cell, displaced to the top <br> NB do NOT award this mp if additional organelles shown, but IGNORE shading / stippling | (3) |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 4(b) | 1. \{fatty acids / tails\} are \{hydrophobic / non-polar / eq\} ; <br> 2. (so orientate themselves) away from \{water / polar environment / eq\}; <br> 3. \{phosphate/heads\} are \{hydrophilic / polar / eq\}; <br> 4. (so orientate themselves) towards \{water / polar environment $\}$; <br> 5. idea that phospholipids arranged in bilayer due to aqueous environment on both sides of membrane / eq ; <br> Comments <br> mp 1: ACCEPT insoluble and water-hating <br> mp 2 : need some reference of orientation due to water or environment, not just a reference to facing each other <br> mp 4: need some idea of orientation towards water | max <br> (3) |



| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 5(b) | 1. cells preparing to divide / eq ; <br> 2. reference to $S$ phase ; <br> 3. reference to replication (of DNA) ; <br> 4. reference to semi-conservative (replication) or a description of it ; <br> 5. idea that new cells will have same quantity of DNA as parent / eq ; <br> Comments <br> mp 1: ACCEPT preparing for mitosis / prophase <br> mp 2: ACCEPT synthesis phase <br> mp 3: ACCEPT reference to formation of chromatids <br> mp 5: needs a reference to the parent cell or original parent | max <br> (2) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| 5(c) | 1. chromosomes \{move to / at/ eq ; opposite poles of cell <br> 2. ref to formation of nucleus / eq ; <br> 3. ref to formation of cell \{plate / wall\}; <br> 4. \{cell splits in two / eq\} / reference to cytokinesis; <br> Comments <br> mp 1: ACCEPT chromatids or centromeres <br> ACCEPT sides, ends or edges <br> mp 2: ACCEPT reference to nucleolus / nuclear <br> membrane re-forming | max |
| (2) <br> IGNORE references to meiosis <br> IGNORE references to prophase and metaphase |  |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{6 ( a ) ( i )}$ | 1. solution A contains starch but neither reducing <br> sugar nor protein / contains ONLY starch ; |  |
| 2. solution B contains a reducing sugar but neither <br> protein nor starch / contains ONLY reducing <br> sugar ; <br> Comments <br> If candidate refers to A containing starch and B <br> containing a reducing sugar, but does not tell us what the <br> solutions don't contain, then award $\mathbf{1}$ mark only | (2) |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| 6(a)(ii) | 1.\{starch / (named) non-reducing sugar\} has been <br> \{hydrolysed / eq\}; <br> 2. to form a reducing sugar ; <br> Comments <br> mp 1: do NOT accept starch is reduced <br> ACCEPT glycosidic bonds have been hydrolysed <br> but NOT bonds have been hydrolysed - we want <br> the idea that carbohydrate is present | (2) |
| mp 2: ACCEPT glucose, maltose, monosaccharides or |  |  |
| references to free aldehyde or ketone groups |  |  |$\quad$.


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{6 ( a ) ( \text { iii) }}$ | solution C contained a lower concentration of (reducing) <br> sugar than solution B ; <br> Comments <br> ACCEPT stronger solution, but not stronger sugar | (1) |


| Question <br> Number | Answer | Mark |
| :---: | :---: | :---: |
| 6(b) | 1. use equal volumes of each (protein) solution ; <br> 2. use equal $\{$ volumes / concentrations $\}$ of biuret reagent / eq ; <br> 3. \{purple / lilac / mauve / violet\} colour produced /eq ; <br> 4. \{compare intensity of colour / eq\}/ use a colorimeter ; <br> 5. (deeper colour / eq) shows higher protein (concentration) / eq ; <br> Comments <br> mp 2: ACCEPT description of biuret reagent as biuret A and biuret B OR NaOH / KOH followed by $\mathrm{CuSO}_{4}$ reference to heating negates this mp <br> mp 3: IGNORE references to formation of precipitates <br> mp 4: reference to calorimeter negates this mp IGNORE references to time, EXCEPT timing how long it takes to change colour, as this would not work <br> mp 5: ACCEPT solutions with least transmission OR most absorbance has higher protein concentration <br> NB <br> 1. If candidate gives wrong reagent then penalise mp 2. If the wrong colour is given, mp 3 is not awarded but mps 4 \& 5 can still be awarded <br> 2. A statement such as 'the solution that goes the deepest purple has the highest protein concentration' gets mps 3, $4 \& 5$ | max <br> (3) |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 7(a) | 1. idea that part of the DNA helix unwinds ; <br> 2. DNA strands separate ; <br> 3. hydrogen bonds are broken ; <br> 4. idea of one strand acting as a template ; <br> 5. (RNA) (mono)nucleotides line up against complementary (DNA) bases ; <br> 6. reference to formation of phosphodiester bonds / eq ; <br> 7. correct reference to \{RNA polymerase / DNA helicase\}; <br> 8. reference to detachment of mRNA (molecule) from the DNA ; <br> Comments <br> mp 2: ACCEPT DNA unzips <br> mp 5: ACCEPT reference to nucleotides bonding to complementary bases we want the term 'complementary' <br> mp 6: ACCEPT a description of bonds forming between the nucleotides, but do NOT accept references to deoxyribose sugars <br> mp 7: DNA helicase cannot be awarded if in the context of mp 4-6, RNA polymerase cannot be awarded if in the context of mp 1 | max <br> (4) |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 7(b) | 1. reference to translation / eq ; <br> 2. mRNA becomes \{associated/eq\} with ribosomes; <br> 3. idea that a ribosome hold two transfer RNA molecules; <br> 4. reference to transfer RNA attached to amino acid; <br> 5. peptide bonds formed (between adjacent amino acids) ; <br> 6. reference to ribosome moving along mRNA ; <br> Comments <br> mp1 : for a description of translation, do NOT accept 'involved in protein synthesis' <br> mp 2: enters / builds / attaches all give the idea of an association, simple references to 'moves to ribosome' is not sufficient <br> mp 5: do NOT accept polypeptide or dipeptide bonds <br> mp 6: ACCEPT mRNA moves along ribosome | max <br> (3) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{7 ( c ) ( i )}$ | GGG CGC UCG AAA; ; |  |
|  | [1 mistake : 1 mark] |  |
| IGNORE anything written in T5 box | (2) |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{7 ( c ) ( i i )}$ | (glycine) arginine serine lysine;; <br> [1 mistake : 1 mark] |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{7 ( c ) ( i i i ) ~}$ | ATT / ATC / ACT; | $\mathbf{( 1 )}$ |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 8(a)(i) | 1. A: can be re-used ; <br> E: reduces overall cost / more economical / eq ; <br> 2. A: process is continuous / eq ; <br> E: saves time / can be automated / reduces cost ; <br> 3. A: enzymes more stable ; <br> E: less likely to be \{denatured / affected by temperature changes/affected by pH changes\}; <br> 4. A: enzymes can be used at higher temperatures ; E: faster reaction / saves time ; <br> 5. A: enzymes does not have to be separated from product / eq ; E: reduces cost / saves time ; <br> 6. A: more than one enzyme can be fixed in order ; E: greater control over process / saves time / more efficient ; <br> 7. A: idea that enzyme is safer to handle e.g. allergic reaction / irritant ; E : enzyme only activated when in use ; <br> HOW TO MARK THIS QUESTION <br> 1. Two advantage marks <br> 2. Explanation must be linked to appropriate advantage <br> 3. Read through answer looking for the advantages that have correct explanations, to give candidates the highest mark possible <br> 4. Two advantages in a statement with a correct explanation gets 4 marks <br> NB Comments appear on the next page | max <br> (4) |


|  | Comments <br> $m p ~ 1: ~ A: ~ d o ~ N O T ~ a c c e p t ~ ' n o t ~ u s e d ~ u p ' ~$ <br> E: ACCEPT references to cheap or cheaper <br> $m p$ 3: A: ACCEPT 'does not change shape' <br> E: ACCEPT references to resistant or tolerant <br> to temperature or pH changes |  |
| :--- | :--- | :--- |
| mp 4: A: ACCEPT wider range of temperature |  |  |
| $m p$ 5: A: ACCEPT easily separated and does not |  |  |
| Contaminate product |  |  |
| CHECK they say 'product' and not 'substrate' |  |  |$\quad$.


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 8(a)(ii) | 1. Iactose \{hydrolysed / eq\} to glucose and galactose / eq ; <br> 2. production of lactose-reduced milk / eq ; <br> 3. reference to lactose intolerance / eq ; <br> 4. reference to (change in) sweetness / use in confectionery industry / eq ; <br> Comments <br> mp 3: ACCEPT can't digest lactose or can't produce lactase <br> mp 4: other uses include cats milk, whey syrup and ice-cream | max <br> (3) |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 8(b)(i) | 1. formic acid binds to active site of cyanidase ; <br> 2. \{linear / eq\} up to $38 / 40$ (minutes) ; <br> 3. decrease in rate between $38 / 40$ and $68 / 70$ minutes / eq ; <br> 4. maximum concentration \{reached at $68 / 70$ (minutes) / is 0.325 (au) \}; <br> 5. maximum rate is 0.0069 au per minute ; <br> Comments <br> mp 2: eqs for linear include proportional, rapid, constant rate and concentration (NOT rate) increases steadily <br> mp 4: ACCEPT plateau for maximum concentration ACCEPT no more formic acid produced <br> NB <br> 1. Consequential error applies to mp 3 if figures wrong in mp 2 , and for mp 4 if figures wrong in mp 3 <br> 2. Do NOT accept references to the line or the graph going up / plateauing etc <br> 3. ACCEPT figures without units in $m p s 2,3 \& 4$. Units must be given for mp 5 | max <br> (3) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| 8(b)(ii) | 1. idea that substrate has to penetrate into gel / <br> bead / support material; | 2. idea that not all active sites may be on / near <br> surface of bead; <br> 3. immobilised enzyme has little kinetic energy / <br> \{fewer / less energetic\} collisions; |
| 4. fewer enzyme-substrate complexes formed; <br> Comments <br> IGNORE references to surface area of enzymes / <br> active sites | max <br> (2) |  |

