Mark Scheme (RESULTS) January 2008

GCE

GCE Biology (6105/01)

Question Number	Answer	Mark
$\mathbf{1}$ (a)	(biotype) B ;	$\mathbf{1}$

| Question
 Number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b) | 1. (populations of biotype A and B) are separated by \{behavioural /
 reproductive / physiological\} isolation ; | |
| 2. isolation described e.g. mate at different times ;
 3. no gene flow between the populations / each population genetically
 isolated ; | 4. natural selection described e.g. biotype B flies with the gene for
 resistance to insecticide survive ; | max |
| 6. reference to sympatric speciation ; | | |

Question Number	Answer	Mark
$\mathbf{1}$ (c)	1. reference to resistance to insecticides ; 2. no contamination (by chemicals) ; 3. no need to reapply / it is longer lasting / reference to resurgence ;	
	4. correct reference to specificity of control ; 5. reference to organic status ;	max

Question Number	Answer	Mark
$\mathbf{2 ~ (a) ~}$	$\mathrm{A}=$ reverse transcriptase ;	
	$\mathrm{B}=$ DNA polymerase ;	$\mathbf{2}$

Question Number	Answer	Mark
$\mathbf{2 ~ (b) ~}$	1. plasmid \{opened / cut / eq\} using \{endonuclease / eq\} ; 2. reference to sticky ends ; 3. (ends of) DNA complementary to plasmid /eq ; 4. joins by hydrogen bonding ; 5. correct reference to (DNA) ligase / formation of phosphodiester bonds ;	max

Question Number	Answer	Mark
$\mathbf{2 (c)}$	1. idea of marker gene ;	
	2. (marker gene) \{fluorescence / can be for antibiotic resistance / eq\} ;	$\mathbf{2}$

Question Number	Answer	Mark
$\mathbf{3}$ (a)(i)	1. idea of both alleles (in heterozygote) contributing (equally) to expression (in phenotype) ;	
2. $\left\{\mathbf{I}^{\text {A }} /\right.$ allele for A\} is codominant with $\left\{\mathbf{I}^{\mathbf{B}} /\right.$ allele for B$\} / \mathbf{I}^{\text {A }}$ and $\mathbf{I}^{\mathbf{B}}$	$\mathbf{2}$	

Question Number	Answer	Mark
$\mathbf{3}$ (a)(ii)	1. idea of more than two alleles available at a locus ; 2. idea of three alleles in blood grouping / reference to $\mathrm{I}^{\mathrm{A}}, \mathrm{I}^{\mathrm{B}}$ or I° being available ;	max $\mathbf{1}$

Question Number	Answer	Mark
3 (b)(i)	$\begin{aligned} & C 1=1^{\mathrm{A}} 1^{\mathrm{B}} \\ & C 2=1^{\mathrm{B}} 1^{\mathrm{O}} \\ & C 3=1^{\mathrm{A}} 1^{\mathrm{B}} ; \end{aligned}$	1

Question Number	Answer	Mark
3 (b)(ii)	1. $I^{0} I^{0}$ is identified as 0 group blood ; 2. $\left\{\mathbf{I}^{\boldsymbol{A}} \mathbf{I}^{\mathbf{O}} / \mathbf{A o} / \mathbf{A O}\right\}$ and $\left\{\mathbf{I}^{\mathbf{B}} \mathbf{I}^{\mathbf{O}} / \mathbf{B o} / \mathbf{B O}\right\}$; 3. gametes from each parent shown correctly ; 4. correct use of diagram or Punnett square to show possible combinations of offspring genotypes ; 5. (this gives) one in four chance / eq ;	$\max _{4}$

Question Number	Answer	Mark
$\mathbf{4}$ (a)(i)	$2250-240 ;$	
$(2010 / 2250 \times 100=) 89.3 ;$	$\mathbf{2}$	

Question Number	Answer	Mark
4 (a)(ii)	1. not all the primary consumer is eaten / some die and are not eaten / eq ;	
2.some (of the eaten primary consumers) \{undigested / egested / lost as faeces / eq\} ; 3. losses from respiration / eq ; 4. loss from \{excretion / urine / urea / eq\} ;	max	

Question Number	Answer	Mark
4(b)	1. blue and red light absorbed ; 2. (blue and red) absorbed by chlorophyll ; 3. blue light absorbed by carotene ; 4. green light reflected / eq ;	max $\mathbf{3}$

Question Number	Answer	Mark
4 (c)	1. acid rain \{damages / eq\} cuticle of leaves / damage to guard cells ; 2. causes plants to transpire more / more stressed in drought / eq ; 3. causes \{leaf drop / die back / crown loss / eq\} ; 4. less photosynthesis / reduced surface area for absorbing light ;	
	5. damages root hairs ; 6. plants unable to absorb as much \{water / nutrients / minerals / eq\} ;	max

Question Number	Answer	Mark
$\mathbf{5}$ (a)(i)	$\mathrm{A}=$ (mono)nucleotide ;	1

Question Number	Answer	Mark
$\mathbf{5}$ (a)(ii)	1. phosphate 2. deoxyribose	3. \{nitrogenous / organic\} base / eq ;; [3 correct = 2 marks, 2 correct = 1 mark]

Question Number	Answer	Mark
$\mathbf{5}$ (b)(i)	$\{$ inter / synthesis / S $\}$ (phase) ;	1

Question Number	Answer	Mark
$\mathbf{5}$ (b)(ii)	1. reference to each strand as template (for synthesis of new strands) ; 2. idea that each \{daughter / eq\} molecule contains one of the \{parental / eq\} DNA strands ; 3. and one new strand ;	max $\mathbf{2}$

Question Number	Answer	Mark
$\mathbf{5}$ (b)(iii)	1. enzyme ; 2. ref to \{links nucleotides / formation of phosphodiester bonds / eq\} ;	3. to form new strand / eq ; 4. use of \{ATP / GTP / CTP / TTP\} ;

Question Number	Answer	Mark
5 (c)	(mitosis) 1. reference to any of the following events not occurring ; 2. allele sequence unchanged (on daughter chromosomes) ; (meiosis) 3. reference to \{chromosome pairing / formation of bivalents\} ; 4. during prophase 1 ; 5. reference to exchange of \{alleles / genetic material\} ; 6. idea of recombinant \{chromatids / chromosomes\} formed / new sequences of alleles;	\max 4

Question Number	Answer	Mark
$\mathbf{6}$ (a)(i)	1. recognisable as synapse ; 2. two correct pairs of labels ;;	$\mathbf{3}$

Question Number	Answer	Mark
$\mathbf{6}$ (a)(ii)	(mitochondria) 1. release energy / produce ATP / through aerobic respiration / oxidative phosphorylation ;	2. energy used in active transport / synthesis of transmitter substance / movement of vesicles ; (synaptic vesicles) 3. contain \{transmitter / named transmitter\} ; 4. fuse with pre-synaptic membrane / releases transmitter (into synapse);

Question Number	Answer	Mark
6 (b)	1. into blood stream ; 2. through \{skin / alveoli / nose / mouth / eq\} ; 3. (carried) in the plasma ; 4. correct reference to diffusion of nicotine ;	
	5. (diffusion from blood) into tissue fluid / eq ; 6. nicotine mimics acetylcholine / eq ; 7. binds to receptors / eq ; 8. on post-synaptic membrane ; 9. it causes the release of adrenalin in some synapses ;	max

Question Number	Answer	Mark
$\mathbf{7}$ (a)	$\{a /$ alpha $\}$	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{7}$ (b)	1. idea of making molecule \{more reactive / able to react more easily\} ;	
	2. by lowering activation energy ; 3. maintains concentration gradient / prevents loss of glucose from cell ;	max

Question Number	Answer	Mark
$\mathbf{7}$ (c)	\{pyruvate / pyruvic acid $\}$	
	ATP	
	\{NADH / reduced NAD / eq\} ;;	
	$[3$ correct = 2 marks, 2 correct = 1 mark]	$\mathbf{2}$

Question Number	Answer	Mark
7 (d)(i)	1. binds to \{hexokinase / enzyme\} \{not at active site / at allosteric site\} ; 2. changes shape of active site ; 3. glucose no longer fits / eq ; idea of more molecules of glucose-6-phosphate (as concentration increases) ; 5. causes more molecules of enzyme to be inhibited ;\quadmax $\mathbf{3}$	

Question Number	Answer	Mark
$\mathbf{7}$ (d)(ii)	1. \{reaction / phosphorylation of\} glucose \{slows down / stopped\} ; 2. glucose remains in \{cytoplasm / cell\} / glucose not removed from \{cytoplasm / cell\} ; 3. as (more) glucose diffuses into \{cytoplasm / cell\}, concentration increases ; 4. diffusion \{stops / slows down\} because \{equilibrium has been reached / no concentration gradient / eq\} ;	max $\mathbf{3}$

PAPER TOTAL: 70 MARKS

